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Abstract—We investigate code reasoning skills of Large Lan-
guage Models (LLMs) in the context of formal program veri-
fication. Specifically, we look at the problem of inferring loop
invariants as well as ranking functions for proving safety
properties and loop termination, respectively. We demonstrate
how emergent capabilities of LLMs can be exploited through a
combination of prompting techniques as well as by using them in
conjunction with symbolic algorithms. We curate and contribute
a dataset of verification problems inspired by past work. We
perform a rigorous evaluation on this dataset to establish that
LLMs have the potential of improving state-of-the-art in program
verification.

I. INTRODUCTION

Formal verification seeks to establish a proof of correctness
of a program with respect to a given property. Broadly
speaking, this involves proof construction (e.g., finding loop
invariants), and proof checking (e.g., establishing their induc-
tiveness). While proof checking has benefited from mechanical
automation enabled by SMT solvers, proof construction still
requires ingenuity and has been harder to automate.

The guess-and-check methodology seeks to reduce burden
on the proof construction by allowing it to guess a proof
that potentially may have mistakes. The soundness comes
solely from proof checking. This methodology has allowed
for Machine-learning (ML) based techniques to enter program
verification. While it is hard for ML techniques to guarantee
soundness, it can still be a source of good “guesses” on why
a given program is correct, and better guesses lead to faster
verification. Work in this space includes generating data from
program executions and guess invariants through classical
learning techniques [1], [2], active learning over decision trees
[3], continuous logic networks [4], [5], as well as training
neural networks to directly predict invariants from program
text [6], [7]. The trend of training models for individual
tasks, thus requiring independent datasets, is changing with
the advent of Large Language Models (LLMs) and this forms
the inspiration for our paper.

Latest foundational models such as GPT-4 [8], PaLM-2 [9],
Llama-2 [10] have been trained on vasts amount of data, and
have shown remarkable ability in solving a diverse set of tasks.
One can supply a set of instructions in natural language to
guide the model towards a certain task of interest [11]. LLMs
are already aiding many software developers in writing code
[12], [13]. We study the use of these foundational models for

constructing proofs that can be discharged by a formal proof
checker, following the guess-and-check methodology.

We study two different verification tasks, one on safety ver-
ification and another on proving program termination. Safety
verification requires finding inductive invariants for loops as
well as pre-post conditions for procedures, so that the given
assertions in a program can be proved safe. In termination,
the goal is to find a ranking function, as well as supporting
invariants, to prove termination of loops. We curate a dataset of
programs in the C language for these tasks and build an LLM-
based toolchain, called LOOPY, for proof generation. The
proofs are discharged by an off-the-shelf formal checker; in
our implementation, we use Frama-C [14] because it directly
supports C programs with invariant annotations.

LOOPY is based on two key aspects that help make effective
use of LLM capabilities. The first is prompt engineering that
encodes a set of instructions to describe the different tasks
to an LLM. For instance, the prompt for program termi-
nation includes a definition of ranking functions in natural
language. Ranking functions come in various forms, such
as lexicographic ranking functions and multi-phase ranking
functions; we demonstrate that LLMs are capable of producing
such ranking functions when prompted with their definitions.
We also introduce the concept of nudging where additional
generic instructions are added in natural language to help
the LLM generate the required proof artifact. For instance,
the LLM is “encouraged” to use implications for dealing
with conditional code, inferring bounds of loop variables, or
producing invariants on unmodified parts of an array.

The second key aspect is the interplay between an LLM
and a symbolic (formal) tool. We find that LLMs are better at
generating ingredients of an inductive invariant than they are
at generating the whole invariant. Consequently, LOOPY uses
the HOUDINI algorithm [15] to weed out incorrect guesses and
converge to a correct inductive subset from the set of LLM-
generated guesses. HOUDINI only uses a linear number of calls
to the checker (linear in the number of candidate invariants).

Contributions: We have curated a dataset of C programs
for multiple different program verification tasks.1 We also
build and evaluate a tool called LOOPY for effectively leverag-
ing LLM capabilities on these tasks. We present an evaluation

1https://github.com/microsoft/loop-invariant-gen-experiments
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with multiple LLMS: GPT-4 [8], GPT-3.5 [16], and Code
Llama [10], and compare the performance of LOOPY against
a state-of-the-art symbolic baseline. Our results establish that
LLMs have the potential of improving state-of-the-art in
program verification. LOOPY is able to out-perform existing
symbolic tools on several benchmarks.

II. VERIFICATION TASKS AND DATASETS

We define a verification task as a C program along with a
property of interest that must be established for the program.
Our choice of the C programming language is based on the
availability of the benchmarks as well as a formal checker
(Frama-C [14]). Frama-C defines a language called ACSL
[17] for writing annotations (assertions, invariants, ranking
functions, etc.) as comments in C programs. We consider two
kinds of verification tasks: Safety verification and Termination
checking.

a) Safety verification: In this category of benchmarks,
each of the C programs have embedded assertions. The goal
is to come up with ACSL annotations that help Frama-C prove
those assertions. We obtained these benchmarks from multiple
sources, including Code2Inv [7], Accelerating Invariant Gener-
ation [18], Data-Driven CHC solver [19], Fluid Updates [20],
Diffy [21], as well as the SV-COMP repository [22].

We perform basic filtering on these benchmarks. We discard
programs that are known to be incorrect (i.e., the assertion does
not hold). We also remove programs that are greater than 500
lines of code. This allows us to fit the entire program inside a
single LLM query, helping us to focus on the code reasoning
capabilities of LLMs. We then create three exclusive datasets,
based on certain program features, as described below.

The first dataset consists of 469 programs that use only
scalar types (either signed or unsigned) with a single main pro-
cedure with one loop. This category of benchmarks exercises
basic mathematical reasoning, without bringing in concerns
of modeling pointers, heap semantics, or quantified invariants.
The second dataset consists of 31 programs with recursion,
only scalar types, and no loops. These benchmarks have
minimum 1, maximum 4, and average 1.4 non-main methods.
The third dataset consists of 169 programs with a single
method and at least one array or pointer. We are restricted by
limitations of Frama-C to deal with such programs because it
currently lacks support for dynamic memory allocation. We
manually remove memory allocation from programs where it
is not important. These programs have minimum 1, maximum
13, and an average of 4.4 loops per program.

b) Termination checking: The goal here is to infer a
ranking function (also called a loop variant) for a loop that
proves its termination. A ranking function is an integer-valued
expression defined over program variables that is bounded
below by 0 and strictly decreases in each iteration. We collect
benchmarks from The Termination Competition [23] and from
Shi et. al. [24]. We filter these programs, retaining programs
that each consist of only scalar variables, single method, no
assertions, and a single loop (that we believe is terminating).
This set consists of 281 benchmarks.

We remove any comments in all the programs in our datasets
because they could potentially provide hints to the LLMs.

c) Summary of the results: We show examples of pro-
grams in each of our datasets in Figure 1. All the comments
in these examples are LOOPY-generated output (massaged
slightly for conciseness), which in each case suffices to com-
plete the corresponding verification task. Figure 2 summarizes
LOOPY’s performance across these datasets. The column Total
is the total number of benchmarks in the dataset. The column
“Vanilla LLMs” refers to the number of benchmarks that
GPT-4 is able to solve with a basic prompt (and multiple
completions, we detail these concepts in later sections). These
numbers show the raw LLM performance on the corresponding
tasks. Column LOOPY is the number of benchmarks solved by
our LLM-based toolchain; a significant increase over raw LLM
performance. The next two columns provide a comparison
against a symbolic baseline. We show the performance of
Ultimate Automizer [25], one of the tools that routinely wins
medals in SV-COMP. The last column is the number of
benchmarks that could be solved by either LOOPY or Ultimate,
showcasing the potential of LLMs in improving the state-of-
the-art.

III. INDUCTIVE LOOP INVARIANT INFERENCE

This section considers the problem of inferring inductive
loop invariants. Guided by empirical observations, we propose
three techniques that can be used to augment LLMs for such
tasks: (a) providing domain-specific instructions to the LLMs,
(b) filtering incorrect LLM outputs with an adaptation of the
Houdini algorithm, and (c) using LLMs to repair the incorrect
invariants. We find that these three techniques significantly
improve the ability of LLMs to infer loop invariants. While we
use GPT-4 for most of our experiments, we also present a com-
parison with GPT-3.5-Turbo and CodeLlama-34b-Instruct [10]
(an open source LLM) in III-G.

A. The problem

Consider a C-like imperative language. Let S denote state-
ments written in this language. Hoare triples {P} S {Q},
where P and Q are logical propositions over program variables
in some underlying logic, are assertions interpreted as: if P
holds before executing the statement S, then Q holds after its
completion [26] (S may not terminate though). Inductive loop
invariants, I , are logical summaries for loop statements in the
language, used to prove the corresponding Hoare triples. For
example, for while, following is an inference rule to derive a
Hoare triple (B denotes boolean expressions):

P ⇒ I {I ∧B} S {I} I ∧ ¬B ⇒ Q

{P} while B do S {Q}

Inductive loop invariant I is a logical proposition that (a) holds
at the beginning of the loop (P ⇒ I), (b) is preserved by the
loop body ({I∧B} S {I}), and (c) implies the postcondition
of the loop (I ∧ ¬B ⇒ Q). We assume that the qualifier
“inductive” is implicit when we talk about invariants in this
paper, and hence drop it for convenience.
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void main() {
int k = 100, b = 0;
int i = 0, j = 0, n;
// @invariant 0 <= n <= 2k
// @invariant n % 2 == b
// @invariant b == 0 ==> i == j
// @invariant b == 1 ==> i == j - 1
for (n = 0; n < 2*k; n++) {
if (b) i++; else j++;
b = !b;

}
assert (i == j);

}

(a) Loop invariant

void main() {
int x = unknown(), y = unknown(), z = unknown();
// multi-phase ranking function
// [z; y; x]
while (x >= 0) {
if (unknown()) x = x + y;
else x = x + z;
y = y + z; z = z - 1;

}
}

(c) ranking function for loop termination

void main()
{
int N = unknown ();
if (N <= 0) return;
int i, a[N];
// @invariant 0 <= i <= N;
// @invariant \forall k. 0 <= k < i ==> a[k] == 3;
// @assigns i, a[0..N-1];
for (i = 0; i < N; i++) { a[i] = 3; }

// @invariant 0 <= i <= N;
// @invariant \forall j. i <= j < N ==>
// a[j] == \at(a[j], Entry);
// @invariant \forall j. 0 <= j < i ==>
// a[j] == 1 || a[j] == 2;
// @assigns i, a[0..N-1];
for (i = 0; i < N; i++) {
if (N % (i + 1) == 0) a[i] = a[i] - 1;
else a[i] = a[i] - 2;

}
for (i = 0; i < N; i++) { assert (a[i] <= 2); }

}

(b) Loop invariant over arrays

Fig. 1: Example programs along with LOOPY-generated annotations. Each program verifies with Frama-C.

Benchmark Features Total Vanilla LLMs LOOPY Ultimate LOOPY + Ultimate
Scalar loops (1, 1) 469 237 (51%) 398 (85%) 430 (92%) 461 (98%)
Array loops (1, ≥1) 169 60 (36%) 127 (75%) 12 (7%) 128 (75%)
Recursion (≥1, 0) 31 14 (45%) 16 (52%) 20 (65%) 23 (74%)

Termination (1, 1) 281 49 (17%) 181 (64%) 236 (84%) 255 (91%)

Fig. 2: Summary of LOOPY results. Features are (#methods, #loops).

Automatically synthesizing loop invariants is one of the
classical problems in program verification. Our goal is to
use and evaluate LLMs for this task. Interactions with LLMs
happen via prompts. Prompts are textual instructions for
LLMs to perform a task. LLMs respond to prompts with
textual answers. LLMs may also be instructed to generate
multiple responses (commonly called as completions) for one
prompt. For our tasks, we design prompt templates that contain
common instructions for LLMs to infer loop invariants, and
template holes for the exact program. For each benchmark, we
instantiate the template hole with the benchmark program.

B. Basic algorithm

Figure 3 shows our basic algorithm for loop invariant
inference using LLMs; in the subsequent sections, we will
refine it with additional techniques. The algorithm takes as
input a program P , a prompt template M, and the number
of completions Nc. It either returns Success I, where I is a
set of propositions such that

⋀︁
i∈I i is a loop invariant strong

enough to prove the assertions in P , or it returns Failure when
it cannot infer a sufficiently strong loop invariant.

1: procedure INFERENCE(P,M,Nc)
2: while 0 < Nc do
3: I ← L(M[P])
4: b, _, _← O(P, I)
5: if b then return Success I
6: else Nc ← Nc − 1

7: return Failure

Fig. 3: Algorithm for invariant inference using LLMs

To check the output of LLMs, the algorithm relies on an
Oracle O. The oracle takes as input the program P and the
set I. It returns as output a triple (b, IS , INI), where:

1) b is a boolean value, true if P verifies with the loop
invariant

⋀︁
i∈I i, false otherwise.

2) IS ⊆ I is the set of invariants that exhibit parsing errors;
when b is true, IS is empty.

3) INI ⊆ I is the set of invariants for which the oracle
cannot establish the inductiveness property. This can
happen for two reasons: (a) when the invariant does not
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hold at the beginning of the loop, or (b) when the loop
body does not maintain the invariant. When b is true or
when IS is non-empty, INI is empty.

We assume that the oracle is sound, i.e., if it returns true,
the assertions in P can be proven in the underlying logic using
the loop invariant

⋀︁
i∈I i. The basic algorithm does not use

IS and INI .
Given these notations, the algorithm is a straightforward

loop that prompts the LLM with the prompt template instan-
tiated with the program (M[P]) until it either finds a loop
invariant or runs out of the number of completions to try.
Soundness of the algorithm follows from the soundness of the
oracle O.

For our experiments, we instantiate O with Frama-C,
configured to use only the WP plugin for verifying ACSL
annotations. Under these settings, Frama-C does not attempt
to infer the invariants by itself; it is focused on verifying
the correctness of supplied loop invariants as well as the
assertions in the input program. Additionally, we configure
the WP plugin to use Z3 [27], Alt-Ergo [28], and CVC4 [29]
as the external provers, with a timeout of 3 seconds.

C. Basic prompt

We evaluate the algorithm with a basic prompt template,
M0, shown below. Here, the {{ code }} section is the template
hole for the program. Notably, the template does not explain
to LLM what loop invariants are or provide any detailed
instructions for inferring them. It does, however, provide
instructions to format the output in the ACSL syntax; this
helps in automating the checking process.

Consider the following C program:
{{ code }}
Output the loop invariants for the loop in the program above. Output
all the loop invariants in one code block. E.g.,
/*@

loop invariant i1;
loop invariant i2;

*/

Fig. 4: Performance of LOOPY with and without Houdini
(solid and dashed lines, resp.) for the two prompt templates

Figure 4 (dashed line for prompt M0) shows experimental
results with GPT-4. It plots the success rate (number of verified
benchmarks) as the number of completions is varied from 1
to 15. We account for the stochastic nature of LLMs in the
standard way using the pass@k metric [30]: we first generate
the maximum number of completions (15) and compute its

success rate. Then, the success rate for k < 15 completions
is obtained as the expectation over a random sample of size
k out of the 15 completions. As the figure shows, with 15
completions, GPT-4 is able to solve ∼50% (237/469) of the
benchmarks. Multiple completions help, though there are di-
minishing returns after ∼8 completions. The experiment shows
that even without any specialized instructions or techniques,
GPT-4 is able to solve a non-trivial fraction of the benchmarks.

D. Prompt with domain-specific instructions

On manual inspection of the failure cases with M0, we
observe that the model makes several low-level mistakes, such
as using variables or functions that are not defined, using
conditional statements in the invariants, etc. We also notice
that the model misses certain common invariant expressions,
such as bounding a variable with its minimum and maximum
values or relations between variables themselves. Consider the
loop invariant example in Figure 1(a). With M0, the LLM
only outputs 0 ≤ n≤ 2*k and n % 2 == b. While both these are
valid invariants, they are not sufficient to prove the assertion,
as they don’t capture the relationship between i and j, which
is conditional on the value of b.

To account for such failures, we design a prompt template
M1 that provides more detailed instructions to the LLM.
Specifically, it explains to the LLM, in natural language, what
a loop invariant is, and provides some heuristics about how to
come up with a loop invariant. The full prompt M1 is given
below.

You are a helpful AI software assistant that reasons about how
code behaves. Given a program, you can find loop invariants,
which can then be used to verify some property in the program.
Frama-C is a software verification tool for C programs. The input to
Frama-C is a C program file with ACSL (ANSI/ISO C Specification
Language) annotations. For the given program, find the necessary
loop invariants of the while loop to help Frama-C verify the post-
condition.
Instructions:

• Make a note of the pre-conditions or variable assignments in
the program.

• Analyze the loop body and make a note of the loop condition.
• Output loop invariants that are true

(i) before the loop execution,
(ii) in every iteration of the loop and
(iii) after the loop termination,

such that the loop invariants imply the post condition.
• If a loop invariant is a conjunction, split it into its parts.
• Output all the loop invariants in one code block.

For example:
```
/*@
loop invariant i1;
loop invariant i2;
*/
```

Rules: **Do not use variables or functions that are not declared
in the program.** **Do not make any assumptions about
functions whose definitions are not given.** **All undefined
variables contain garbage values. Do not use variables that
have garbage values.** **Do not use keywords that are not
supported in ACSL annotations for loops.** **Variables that are
not explicitly initialized, could have garbage values. Do not make
any assumptions about such values.** **Do not use the \at(x,

110



Pre) notation for any variable x.** **Do not use non-deterministic
function calls.**

Consider the following C program:
```
{{ code }}
```
You are allowed to use implication to take care of the conditional
nature of the code. Use implication (==>) instead of using if-
then. For all variables, add conjunctions that bound the maximum
and minimum values that they can take, if such bounds exist. If
a variable is always equal to or smaller or larger than another
variable, add a conjunction for their relation. If the assertion is
guarded by a condition, use the guard condition in an implication.
If certain variables are non-deterministic at the beginning or end
of the loop, use an implication to make the invariant trivially true at
that location. Output the loop invariants for the loop in the program
above. Let’s think step by step.

To evaluate M1, we repeat the same experiment as before
with M1 and GPT-4; see dashed line for M1 in Figure 4.
GPT-4 is able to solve 293 benchmarks, 23% more than M0,
demonstrating the effectiveness of detailed prompt instruc-
tions. For the example in Figure 1(a), withM1, LLM outputs
the final two invariants b == 0 ⇒ i == j and b == 1 ⇒ i == j −
1, which are sufficient to verify the example.

E. Pruning incorrect invariants with Houdini

In many cases, we observe that the LLM output contains
the required invariants but they are mixed with other output
expressions that are either syntactically invalid or are not valid
loop invariants. Further, the required invariants may be spread
across multiple completions. In both these cases, the basic
algorithm fails.

The program below is one such example. A candidate
loop invariant for this is 0 ≤ x < n. We observe that in most
completions, LLM outputs 0 ≤ x and x ≤ n as invariants, while
there are some completions in which it outputs input == 0 ⇒
x < n and in some other it outputs input ̸= 0 ⇒ x < n. All the

completions together have the correct components, 0 ≤ x, input
== 0 ⇒ x < n, and input ̸= 0 ⇒ x < n, but no single completion
is correct in itself.

int n = unknown(); if (n <= 0) return;
int x = 0, input = unknown();
while (1) {
if (input) { x = x + 1; if (x >= n) break; }
input = unknown();

}
assert (x == n);

To handle such cases, we augment our basic algorithm
with Houdini [15] to efficiently prune the incorrect outputs;
Figure 5 shows the new algorithm. The algorithm maintains a
set Iu of all the invariants output by the LLM across all the
completions. If none of the completions succeed, the algorithm
invokes the Houdini procedure with Iu, and returns the result
of the Houdini procedure.

The Houdini procedure tries to find a subset of Iu that is
inductive and is sufficient to verify P . While the number of
possible subsets of Iu is exponential in the size of Iu, it turns
out that one can do this check with only a linear number of
calls to the oracle (linear in the size of Iu) [15]. Figure 6 shows

1: procedure INFERENCE(P,M,Nc)
2: Iu ← ∅
3: while Nc > 0 do
4: I ← L(M[P])
5: b, _, _← O(P, I)
6: if b then return Success I
7: else
8: Iu ← Iu ∪ I
9: Nc ← Nc − 1

10: return HOUDINI(P, Iu)

Fig. 5: Inference algorithm with Houdini

1: procedure HOUDINI(P , I)
2: while I ̸= ∅ do
3: b, IS , INI ← O(P, I)
4: if b then return Success I
5: if IS ̸= ∅ then I ← I − IS
6: else
7: if INI = ∅ then return Failure
8: else I ← I − IL
9: return Failure

10:

Fig. 6: Houdini algorithm

an adaptation of the Houdini algorithm to our setting. The
algorithm takes as input a program P and a set of candidate
invariants I. It either returns Success II , where II ⊆ I and⋀︁

i∈II
i is an inductive loop invariant strong enough to verify

P , or it returns a Failure if it cannot find such a subset. The
algorithm repeatedly queries the oracle with its current set
of candidate invariants I. Recall that the output of oracle is
a triple (b, IS , INI), where b is a boolean, IS is the set of
syntactically invalid candidates, and INI is the set of non-
inductive candidates.

If the oracle returns true, the algorithm returns with Success
I. Otherwise, it removes one or more candidates from the
set I and repeats the process. This pruning happens in one
of two ways. If there are some candidate invariants that are
syntactically invalid, they are pruned away. If there are no
syntax errors, and the set INI is empty, the procedure returns
Failure: this indicates the case when the current set I is a
valid inductive invariant, but still not sufficient (i.e., strong
enough) to verify the program. Otherwise the candidates in
INI are pruned away and the loop repeats. The soundness of
the Houdini algorithm follows directly from the soundness of
the oracle. Houdini returns Success I only when the oracle
verifies P with I. Furthermore, the algorithm makes a linear
number of calls to the oracle (linear in the size of candidate
invariant set I). In addition to soundness, Houdini guarantees
to find the largest inductive subset of invariants [15].

Evaluation: Figure 4 (solid lines) show the impact of
Houdini with both the prompt templates M0 and M1. With
Houdini, the success rate for k < 15 is computed as an average
over randomly sampling k out of the 15 completions, taking
their union, and running Houdini.

Houdini has a significant positive impact. With 15 comple-
tions and the M1 prompt, the use of Houdini increases the
success rate by 30.7% (from 293 to 383 solved benchmarks).
As before, the prompt M1 does better than M0 (383 to
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1: procedure INFERENCE(P,M,Nc,Nr)
2: . . .
3: r ← HOUDINI(P, Iu)
4: if r = Success _ then return r
5: else return REPAIR(P, Iu,Nr)

Fig. 7: Inference algorithm with Repair

1: procedure REPAIR(P, I,Nr)
2: _, IS , INI ← O(P, I)
3: while Nr > 0 do
4: I ← L(Mr[P, I, IS , INI ])
5: b, IS , INI ← O(P, I)
6: if b then return Success I
7: else
8: r ← HOUDINI(P, I)
9: if r = Success _ then return r

10: else Nr ← Nr − 1
11: return Failure

Fig. 8: Repair algorithm

327 solved benchmarks). The results suggest that augmenting
LLMs with symbolic techniques such as Houdini can increase
the effectiveness of LLMs in solving such problems.

With the candidate invariants generated using prompt M1,
we invoke Frama-C with timeout values higher than 3 seconds.
We observed that the number of benchmarks verified by
Frama-C remained the same with a timeout of 5 seconds and
even 10 seconds.

F. Using LLMs to repair incorrect invariants

We explore using LLMs to repair the incorrect invariants,
guided by the error messages produced by the oracle. This is
motivated by an observation that in some cases minor changes
to the LLM output can give us the correct invariants.

We parameterize our inference algorithm with another pa-
rameter Nr that denotes the maximum number of repair retries
that the algorithm can make (Figure 7). Instead of returning the
result of Houdini, as in Figure 5, the revised algorithm checks
whether Houdini succeeds. If it does, the algorithm returns the
result. If Houdini fails, it invokes a repair procedure.

The Repair algorithm, shown in Figure 8, takes as input
the program P , the set of all the LLM output invariants Iu
across all completions, and the number of repair retries Nr.
It uses a specialized prompt template Mr, templated over P ,
a set of invariants I, and IS and INI , incorrect subsets of
I as returned by the oracle. The prompt template provides
instructions to the LLM to repair the incorrect invariants. We
show a snippet of Mr below:

Frama−C returns the following message:
{{ error }}

If the error message indicates a syntax error in the loop annotation,
fix the line with the syntax error. To fix the non−inductive
invariants, try the following:

If an invariant is preserved but not established, add a clause to the
invariant to make it established (a clause that makes the invariant
hold before the loop begins).

If an invariant is established but not preserved, add a clause to the
invariant to make it preserved (a clause that makes the invariant

hold after the loop ends, assuming that it holds before the loop
begins).

If an invariant is neither established nor preserved, remove it or
replace it with a different inductive invariant. If none of the
above is possible, add a new loop invariant to strengthen the
existing invariants.

The repair algorithm first invokes the oracle to get the errors
IS and INI . It then prompts the LLM usingMr, instantiated
with P, I, IS , and INI , to repair I; the output of LLM is a
new set of candidate invariants. The algorithm then uses the
oracle and the Houdini procedure to find a sufficiently strong
inductive set of invariants within the new set. The process
repeats until either the algorithm succeeds in finding such a set
or it runs out of the retries budgetNr. The soundness of Repair
follows from the soundness of the oracle and Houdini—it
returns Success only when either the oracle or Houdini returns
Success.

Evaluation: To evaluate our inference algorithm with
Repair, we need to provide the Nr parameter. To keep the
LLM budget the same as before, we make Nc + Nr = 15
so that the use of Repair does not increase the number of
LLM queries. Observing that without Repair, the number of
verified benchmarks starts to plateau at around 8 completions
(Figure 4), we set Nc = 8 and Nr = 7.

With the repair procedure, LOOPY is able to verify 15 more
benchmarks than before, bringing the number of benchmarks
verified to 398/469. An example where repair helps is as
shown. Before repair, the candidate invariants are y == 10 −
(x − 1) and y < 10, both of which capture the behavior of x

and y after the first iteration of the loop. The invariants,
however, do not hold at the beginning of the first iteration
when y is unconstrained. With Repair algorithm, the invariants
are repaired to x == 1 ∨ y == 10 − (x − 1) and x == 1 ∨ y < 10,
allowing y to take any value before the first iteration. With
these invariants, the program verifies.

void main()
{
int x = 1;
int y;
while (x <= 10) {
y = 10 - x;
x = x + 1;

}
assert (y < 10);

}

G. Comparing different LLMs
To compare different LLMs, we evalute our inference

algorithm, with and without Houdini, on two other models:
GPT-3.5-Turbo and CodeLlama-34b-Instruct [10]. For this
experiment, we fix the number of completions to 15 and use
the prompt template M1. Figure 9 shows the results, we also
plot the previously shown results for GPT-4 for comparison.

GPT-4 shows superior performance compared to the other
models, although GPT-3.5-Turbo is a close second with 370
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Fig. 9: LLMs comparison (withM1 and Nc = 15)

Fig. 10: Verified benchmarks

solved benchmarks when using Houdini. Interestingly, using
Houdini helps other models “catch up” with GPT-4 by signif-
icantly increasing their success rates.

Figure 10 shows the intersection among the benchmarks
verified using the different LLMs. GPT-4 has the most number
of exclusively-solved benchmarks (38). GPT-3.5-Turbo is able
to solve 31 benchmarks that GPT-4 could not. This experiment
suggests that using multiple LLMs can help solve more
benchmarks.

H. Qualitative analysis

We manually analyzed the failure cases for LOOPY and
observed that for 10 failures, LOOPY is able to produce a
correct and sufficient loop invariant, but Frama-C fails to
verify the program. This implies a success rate of 408/469
for LLMs, augmented with our techniques. Among the suc-
cessfully verified benchmarks, LOOPY generated, on average,
4.2 invariants per benchmark. Each of these invariants had, on
average, 1.8 variables, and 2.1 operators (boolean, relational,
and arithmetic), indicating that a fair number of invariants were
non-trivial.

Analysis of failed benchmarks: We analyzed the bench-
marks that LOOPY was not able to solve. For the 10 bench-
marks for which LOOPY produces the right invariant but
Frama-C fails to verify the program, we believe that it should
be possible to strengthen Frama-C (e.g., one failure was due
to missing axiomatization of integer mod operation). For the
remaining 61 benchmarks, we manually came up with an

void main() {
int x = 0, y = 0, flag = 0;
while (flag < 1) {
if (y < 0) flag = 1;
if (flag < 1) x = x + 1;
if (x < 50) y = y + 1;
else y = y - 1;

}
assert(y == -2 && x == 99)

}

int main() {
int x = 0, y = 0, N;
if (N < 0)
return 1;

while (1) {
if (x <= N) y++;
else if (x >= N + 1)
y--;

else return 1;

if (y < 0) break;
x++;

}

if (N >= 0)
if (y == -1)
if (x >= 2 * N + 3)
assert(\false);

return 1;
}

Fig. 11: Example (a) where LOOPY fails (left), and (b) where
Ultimate fails but LOOPY succeeds (right).

invariant that makes the program verify with Frama-C. Based
on these ground truth invariants, we do a subjective classifica-
tion of the failures into 4 categories. The classification is not
indicative of features that are beyond LLMs today; there are
also benchmarks in each of these categories that LLMs are
able to solve.

The first category of failures are benchmarks that require
disjunctions in the invariant. These benchmarks can be de-
scribed as either having loops with multiple phases (i.e., as
the loop iterates, the code path taken inside the loop changes
several times, based on some flags or other branches), or
assertions that depend on whether the loop is executed at all
(needing a disjunct to account for the case when the loop
is not entered at all). The program shown in Figure 11(a)
has a multi-phase loop. It starts with x and y both at 0; then
both increase by 1 in each iteration until x reaches 50, after
which x continues to increase by 1 while y starts to decrease.
Describing these “phases” requires one clause for each phase,
connected by disjunction. We classified 44/61 failures in this
category.

The second category of failures are benchmarks whose
ground truth invariants requires a clause with at least three
variables. An example of an invariant in this category is
the following: (0 < p)∧ (2*q + r ≤ w) ∧ (p == r + 2*i). 5/61 fail-
ures fall in this category.

The third category of failures are benchmarks where more
precise constraints were required, compared to what was
generated by our algorithm. For instance, for one of the
benchmarks, the algorithm inferred the invariant (k == x + y
+ z)∧ (x ≤ y) ∧ (y == z), which turned out to be an inductive
invariant, but insufficient to prove the assertion. Changing the
second clause to x == y would make it work. There are 9/61
such failures. The fourth category, containing 3/61 failures,
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requires reasoning about floating-point arithmetic. It was hard
to us, even manually, to come up with their ground-truth
invariants.

Symbolic baseline: We compare the performance of our
LLM-based inference algorithm the Ultimate tool [25] on the
469 benchmarks. Ultimate has higher success rate than LOOPY
with 430/469 benchmarks solved. However, we find that there
are 31 benchmarks that Ultimate does not solve, but LOOPY
can solve. There are 63 benchmarks that Ultimate solves but
LOOPY does not. Ultimate and LOOPY combined can solve
461/469 benchmarks, hinting that combining symbolic tools
with LLM-based techniques can improve the existing state-
of-the-art. Figure 11(b) shows an example from these 31
benchmarks. The assertion in the program can be verified with
the loop invariant (x ≤ N+1 ⇒ y == x) ∧ (x > N+1 ⇒ y == 2*(N+1)
− x), which LOOPY infers but Ultimate does not.

To compare the run times of LOOPY and Ultimate, we ran-
domly selected 50 benchmarks from our dataset and measured
the average time taken by each tool to verify a benchmark. In
the case of LOOPY, we generate 15 completions and check all
of them with Frama-C. If all completions fail, then we run the
Houdini loop. The average run time of Ultimate was 23.11s,
and that of LOOPY was 186.05s (including the LLM inference
time which was 119.86s, using an unoptimized LLM-inference
stack). Although optimizations to the LOOPY implementation
and the LLM inference stack could improve the run time, it
is not in the scope of this work and we leave it as interesting
avenues for future work.

I. Loop invariant inference for programs with arrays

We next evaluate our loop invariant inference algorithm on
169 benchmarks that use arrays. We use the algorithm shown
in Figure 5, i.e. with Houdini but no repair, with 8 completions
(Nc = 8). With the prompt template M0, our algorithm is
able to solve 60/169 benchmarks, while using the template
M1 increases this number to 102/169 benchmarks.

On manual inspection of the failures, we find that LLM
sometimes misses clauses that are common in the invariants
for loops that manipulate arrays. To help LLMs in such cases,
we add some array-specific instructions to the prompt. Some
sample instructions are shown below:

For all the values and array ranges that do not change in the loop,
add an invariant equating them to their value before the loop. Add
a loop assigns clause listing all array ranges and variables
assigned for every loop. When a loop assigns an array,
−Invariants must specify state of all array elements after every
iteration of the loop, even if they have not changed yet.
−For the range of elements yet to be assigned by the loop, just
equate them to their value before the loop. For nested loops, use
the invariants of the inner loop as hints for the outer loop.

The instructions are mostly about capturing the precise state
of the arrays in the invariants. With these instructions the num-
ber of solved benchmarks increases to 127/169. Interestingly,
these 127 are not a superset of the 102 solved with just M1

alone; Figure 12 shows a Venn diagram of the three sets:
benchmarks solved with M0, with M1, and with M1 and
instructions. Consider the array loop invariant example from

Fig. 12: Performance of Loopy instantiated with different
prompts for arrays, M0,M1,M1 + Instructions

Figure 1. The first for loop initializes the array a (of length
N) s.t. a[i] = 3. The second loop, depending on whether N % (i
+ 1) is 0, either assigns a[i] = a[i] − 1 or a[i] = a[i] − 2. The third
loop asserts that a[i] ≤ 2. WithM1, the LLM fails to come up
with the invariant \forall j. i <= j < N ==> a[j] == \at(a[j], Entry) for
the second loop, stating that the values of array elements a[i]
onwards are what they were at the beginning of the loop. This
invariant is crucial for verifying the assert, and so, the program
fails to verify. However, once we instruct the LLM to capture
all array elements in the invariant, LLM outputs this clause,
and the program verifies.

For the 42 failure cases, there are 9 benchmarks where
LOOPY infers the correct and sufficient loop invariants, but
Frama-C fails to verify the program. Further, there are some
programs where the loop invariants inferred by LOOPY are
close to the required invariants. In one of the benchmarks,
for example, the loops iterate from 1 to N, but LOOPY infers
invariants where the index variable ranges from 0 to N. We
believe such cases may be handled by using Repair (Figure 8);
we leave this for future work.

IV. PROGRAM TERMINATION

The problem: A ranking function is used to prove termi-
nation of a loop. In its simplest form, a ranking function V
is an expression involving the variables used in the loop with
the following two properties: (a) at the beginning of every
loop iteration, the value of V is ≥ 0, and (b) the value of V
strictly decreases with each loop iteration. Thus, the value of
V at the beginning of an iteration provides an upper bound on
the number of remaining loop iterations. A ranking function
is sometimes also called a variant. There is a rich literature
on algorithms for synthesizing ranking functions using abstract
intepretation [31] constraint solving, model checking [32], [33]
and more recently using custom trained neural networks [34].
We evaluate LLM capabilities to add to this body of work.

Beyond a simple expression, there are other common forms
of ranking functions, lexicographic ranking functions and
multi-phase ranking functions [35], [32]. A lexicographic
ranking function is a ordered list [Vi], where (a) at the
beginning of a loop iteration, for all i, the value of Vi is ≥ 0,
and (b) in every loop iteration, there exists j s.t. the value of Vj

strictly decreases and ∀k. k < j, the value of Vk remains the
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Prompts used No. of benchmarks verified
M2 133
M2, M3 170
M2, M3, M4 181

Fig. 13: Results for ranking function inference

1: procedure VARIANTINFERENCE(P,M,NV ,NI )
2: while 0 < NV do
3: V ← L(M[P])
4: I ← ∅
5: n← NI

6: while 0 < n do
7: I ← I ∪ L(MI [V,P])
8: n← n− 1
9: r ← Houdini(P, I)

10: if r = Failure then NV ← NV − 1
11: else
12: Success I ← r
13: r ← OT (P,V, I)
14: if r then return Success (V, I)
15: else NV ← NV − 1

16: return Failure

Fig. 14: Ranking function inference

same. A multi-phase ranking function [36] is a special case
of lexicographic ranking function. It is an ordered list [Vi],
where when the loop execution starts, first V1 decreases until it
becomes non-positive, then V2 decreases until it becomes non-
positive, and so on. There are other forms of ranking functions
and well-founded relations [37], [38], [39], [40], [36], [35], but
we restrict focus to only the ones described above.

To prove that a ranking function is valid for a loop,
one might need additional loop invariants to establish key
properties about the loop. The problem, therefore, is to infer
both a ranking function as well as the supporting invariants
that are needed to prove its correctness.

We assume access to an oracle OT that takes as input a
program P (with a single loop), a (candidate) ranking function
V , and an inductive loop invariant I. It returns a boolean value
where true implies that V can be proven to be a valid ranking
function using I. Frama-C provides such an interface, and we
use it as our oracle.

Ranking function inference algorithm: Figure 14 shows
our ranking function inference algorithm. It takes as input a
program P with a single loop, a prompt template M, and
two number of completions parameters NV and NI . It returns
either Success (V, I), where V and I are ranking function
and inductive loop invariant for the loop in P respectively, or
Failure otherwise.

The algorithm instantiates the prompt template M with P ,
and queries the LLM to infer a candidate ranking function V .
To be able to invoke the oracle to check the LLM output, we
need an inductive loop invariant as well. The algorithm infers it
using the techniques developed in the last section. Specifically,
it instantiates a prompt template MI with the candidate
ranking function V and the program P , and prompts the LLM.
Template MI instructs the LLM to infer an inductive loop

invariant required for proving a given ranking function. The
algorithm collects the LLM output loop invariants for NI

completions, and invokes the Houdini algorithm (Figure 6).
If Houdini succeeds, the algorithm invokes the oracle OT
with V and I (the output of Houdini). If the oracle returns
true, the algorithm returns Success (V, I). Whereas if either
Houdini or the oracle fails, the algorithm repeats until it
succeeds or it exhausts the maximum number of retries NV .
The soundness of the algorithm follows from the soundness
of Houdini (Figure 6) and the oracle.

Evaluation: We evaluate our ranking function inference
algorithm on 281 benchmarks, with one method and one loop
each. We set the parameters NV and NI to 5 each, and as
mentioned before, use Frama-C as the oracle. We show that by
adding increasingly domain-specific instructions to the prompt
template M, we can solve more benchmarks.

The prompt template MI contains instructions for the
LLM to infer inductive loop invariants for a given ranking
function. The prompt mentions that the LLM should infer an
invariant that implies the ranking function decreases with every
iteration. It also contains the loop invariant instructions similar
to those in the M1 prompt from the previous section. The full
prompt is available in the public repository1.

We first evaluate a basic prompt template for inferring the
loop ranking function. The prompt template explains to the
LLM what a ranking function is, but it does not instruct the
LLM to infer a specific kind of ranking function (lexicographic
or multi-phase, for instance). The complete prompt text is
available in the public repository1. The result of using this
prompt template is shown in Table 13 as the prompt M2. As
can be seen, with this prompt, our algorithm is able to solve
133/281 benchmarks.

On a closer inspection of the failures, we find that while
the algorithm could solve simple cases of ranking functions
(e.g., when it is a single expression), it did not do so
well on benchmarks that require lexicographic or multi-phase
ranking functions. We, next, add instructions for inferring
lexicographic ranking functions.

A lexicographic ranking function is a sequence of expressions with
the property that each expression must be positive for the loop to
execute. For example, if (e1, e2, e3) is a lexicographic ranking
function, then with each loop iteration, either e1 is positive and
decreases, or e1 remains the same and e2 is positive and decreases
or e1 and e2 remain the same and e3 is positive and decreases.
Find a lexicographic ranking function for the loop in the
following program.

With this prompt, the algorithm is able to solve 37 more
benchmarks (prompt M3 in Table 13). Finally, we try similar
instructions for the multi-phase ranking functions, and solve
11 more benchmarks (prompt M4 in Table 13), taking the
total verified benchmarks to 181/281. The example shown in
Figure 1(c) is one of the benchmarks that fails with the basic
prompt, but with the multi-phase prompt, our algorithm infers
[z; y; x] as a multi-phase loop ranking function.

Symbolic baseline: Ultimate solves 236/281 benchmarks.
There are 162/281 that both our algorithm and Ultimate solve,
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// @requires n >= 0;
// @ensures \result == n % 2;
int isOdd(int n) {

if (n == 0) return 0;
else if (n == 1) return 1;
else return isEven(n - 1);

}
// @requires n >= 0;
// @ensures \result == 1 - n % 2;
int isEven(int n) {

if (n == 0) return 1;
else if (n == 1) return 0;
else return isOdd(n - 1);

}
int main() {

int n = unknown_int();
if (n < 0) return 0;
int result = isOdd(n);
assert(result >=0 && result != n % 2);

}

Fig. 15: Example recursive program along with LOOPY-
generated annotations. The annotated program verifies with
Frama-C.

19/281 that only our algorithm solves, and 74/281 that only
Ultimate solves. Thus our algorithm and Ultimate combined
solve 255/281.

V. RECURSIVE PROGRAMS

While the primary focus of this work has been on dealing
with the complexity of loops, we also explore the ability of
LLMs to deal with recursive programs. Specifically, programs
where the methods are (mutually-) recursive; Figure 15 shows
an example. The task here is to infer the pre- and postcon-
ditions for the methods in the program, such that Frama-C is
able to verify the assertions in the program. The prompt we
used for this task is available in the public repository1. With
a total 31 benchmarks, LOOPY is able to successfully verify
16/31programs with 8 completions. Ultimate is able to verify
20/31 of these benchmarks. Figure 15 also shows the pre- and
postconditions inferred by LOOPY.

VI. RELATED WORK

LLMs for invariant generation: Pei et al. [41] study this
problem by building dataset of programs and corresponding
invariants and then fine-tune a pre-trained LLM on this dataset.
Our approach does not rely on fine-tuning and directly evalu-
ates the capabilities of foundational models. Furthermore, Pei
et al. do not focus on generating inductive invariants that are
necessary for establishing a formal proof of correctness.

Lemur [42] presents a proof calculus and an algorithm to
use an LLM to generate and repair invariants. Lemur uses
a symbolic verifier to check for inductiveness and generate
counterexamples. They use a chaining approach to iteratively
strengthen, repair or backtrack on proposed invariants. This
necessitates a proof of soundness for single method with loops,
and may require further extensions for an interprocedural
setting. It is unclear if Lemur would find an inductive invariant
even if the LLM proposes all of its ingredients, since Lemur

is sensitive to the order in which invariants are proposed.
Integrating Houdini with Lemur could be a promising direction
for future work. Further, their approach does not apply to
proving termination, and even for invariants, it has been evalu-
ated on a much smaller set of benchmarks. Lemur is publicly
available but we were unable to run it. On the benchmarks
of the Lemur paper, LOOPY and Lemur perform comparably
when given the same budget of LLM queries. Among the 133
Code2Inv benchmarks, LOOPY solves 103 benchmarks while
Lemur solves 107 benchmarks. Among Lemur’s 50 SV-COMP
benchmarks, both tools solve 26 benchmarks each.

Yao et al. [43] leverage LLMs to semi-automate proofs for
Rust programs in the context of the Verus program verifier.
However, they do not consider loop termination or working
across multiple methods. Furthermore, their evaluation is not
fully automated for the benchmark and only compared against
a purely manual baseline. Chakraborty et al. [44] build iRank,
a custom model for ranking candidate invariants. iRank is
orthogonal and complementary to our work; we can use it
as a heuristic for decreasing the number of calls to the oracle
by only checking highly-ranked invariant candidates.

LLMs for proof assistants: LLMs have been used to auto-
mate proof synthesis in interactive proof assistants [45], [46].
Leandojo [46], for instance, fine-tunes a retrieval model for
lemma selection and a generative model for proof generation
for the Lean theorem prover. Given the general purpose nature
of these proof assistants, these approaches are not tailored for
automatic program verification that we target in this paper.
Our approach also does not require fine-tuning a model.

A. Threats to validity

A potential concern while working with LLMs is the
problem of data contamination, which happens when the
benchmarks used for evaluation were already a part of the
training data used for the models. In this case, the models
can overfit, which affects their ability to generalize to newer
benchmarks.

There is no ideal way to completely remove contamination
while working with industrial models, or even for open-source
ones, given the scope of training data that they consume. We
compensate, to the best of our ability, by considering as many
benchmarks as we could try, and increasing the diversity of
tasks as well as program and invariant features (arrays, ranking
functions, etc.). The Stack [47], which is a public code corpus
used to train open source models like StarCoder [48] and
DeepSeek-Coder-V2 [49], does not contain the SVCOMP and
Code2Inv benchmarks. We are also not aware of any other data
source where these programs appear alongside their invariants.

Another concern is about the reproducibility of our results.
Closed models, such as GPT-4, can get updated any time,
which can affect the numbers reported in this paper. Our
toolchain is parametric on the choice of LLMs and we do
use an open-source model (CodeLlama) to compensate for
this concern. LLMs are also stochastic, implying that they can
return different responses for the same query. Using multiple
completions helps compensate for this stochasticity.
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