
Marrying Replicated and Functional Data Structures

Vimala Soundarapandian
IIT Madras, India

Adharsh Kamath
NITK Surathkal, India

Kartik Nagar
IIT Madras, India

KC Sivaramakrishnan
IIT Madras, India

Abstract

Replicated data types (RDTs) are data structures that per-
mit concurrent modification of multiple potentially geo-
distributed replicaswithout coordination between them. RDTs
are designed in such a way that conflicting operations are
eventually deterministically reconciled ensuring convergence.
Constructing correct RDTs remains a difficult endeavour due
to the complexity of reasoning about independently evolv-
ing states of the replicas. With the focus on the correctness
of RDTs (and rightly so), existing approaches to RDTs are
less efficient compared to their sequential counterparts in
terms of time- and space-complexity. This is unfortunate
since RDTs are often used in an local-first setting where the
local operations far outweigh remote communication.
In this paper, we present Peepul, a pragmatic approach

to building and verifying efficient RDTs. To make reason-
ing about correctness easier, we cast RDTs in the mould of
distributed version control system, and equip it with a three-
way merge function for reconciling conflicting versions. Fur-
ther, we go beyond just verifying convergence, and provide a
methodology to verify arbitrarily complex specifications. We
develop a replication-aware simulation relation based tech-
nique to relate RDT specifications to their efficient purely
functional implementations. We have developed Peepul as
an F* library that discharges proof obligations to an SMT
solver. The verified efficient RDTs are extracted as OCaml
code and used in Irmin, a Git-like distributed database.

1 Introduction

Modern cloud-based software services often replicate data
across multiple geographically distributed locations in order
to tolerate against partial failures of servers and minimise
latency by bringing data closer to the user. While services
like Google Docs allow several users to concurrently edit
the document, the conflicts are resolved with the help of a
centralised server. On the other hand, services like Github
and Gitlab, built on the decentralised version control system
Git, avoid the need for a centralised server, and permit the
different replicas (forks) to synchronize with each other in a
peer-to-peer fashion. By avoiding centralised server, local-
first software [10] such as Git bring in additional benefits of
security, privacy and user ownership of data.

PaPoC ’22, April 5, 2022, Rennes, France.
.

While Git is designed for line-based editing of text files
and require manual intervention in the presence of merge
conflicts, RDTs generalise this concept to arbitrary general
purpose data structures such as lists and hash maps and en-
sure convergence without manual intervention. Convergent
Replicated Data Types (CRDTs) [15], which arose from dis-
tributed systems research, are complete reimplementations
of sequential counterparts aimed at providing convergence
without user intervention, and have been deployed in dis-
tributed data bases such as AntidoteDB [14] and Riak [13]. In
order to resolve conflicting updates, CRDTs generally need
to carry their causal contexts as metadata [16]. Managing
this causal context is often expensive and complicated.
For example, consider the observed-removed set CRDT

(OR-set) [15], where, in the case of concurrent addition and
removal, the addition wins. A typical OR-set implementa-
tion uses two grow-only sets, one for elements added to the
set A and another for elements that are removed R. An
element 𝑒 is removed from the OR-set by adding it to the
set R, and thus creating a tombstone for 𝑒 . The set mem-
bership is given by the difference between the two: A − R,
and two concurrent versions can be merged by unioning
the individual A and R sets. Observe that the tombstones
for removed elements cannot be garbage collected as that
would require all the replicas to remove the element at the
same time, which requires global coordination. This leads
to an inefficient implementation. Several techniques have
been proposed to minimise this metadata overhead [1, 16],
but the fundamental problem still remains.

1.1 Mergeable Replicated Data Types

As an alternative to CRDTs, mergeable replicated data types
(MRDTs) [8] have been proposed, which extend the idea
of distributed version control for arbitrary data types. The
causal context necessary for resolving the conflicts is main-
tained by the MRDT middleware. MRDTs allow ordinary
purely functional data structures [12] to be promoted to
RDTs by equipping them with a three-way merge function
that describes the conflict resolution policy. When conflict-
ing updates need to be reconciled, the causal history is used
to determine the lowest common ancestor (lca) for use in the
three-way merge function along with the conflicting states.
The MRDT middleware garbage collects the causal histories
when appropriate [4], and is no longer a concern for the RDT
library developer. This branch-consistent view of replication

PaPoC ’22, April 5, 2022, Rennes, France. S.Vimala, A.Kamath, K.Nagar, K.C.Sivaramakrishnan

not only makes it easier to develop individual data types, but
also leads to a natural transactional semantics [3, 5].

For example, an efficient OR-set MRDT that avoids tomb-
stones can be implemented as follows. We represent the
OR-set as a list of pairs of the element and a unique id
which is generated per operation. The list may have dupli-
cate elements with different ids. Adding an element appends
the element and the id pair to the head of the list (𝑂 (1)
operation). Removing an element removes all the occur-
rences of the element from the list (𝑂 (𝑛) operation). Given
two concurrent versions of the OR-set 𝑎 and 𝑏, and their
lowest common ancestor 𝑙 , the merge is implemented as
(𝑎 − 𝑙) @ (𝑏 − 𝑙) @ (𝑙 ∩ 𝑎 ∩ 𝑏), where @ stands for list
append. The unique id associated with the element ensures
that in the presence of concurrent addition and removal of
the same element, the newly added element with the fresh
id, which has not been seen by the concurrent remove, will
remain in the merged result. The merge operation can be im-
plemented in 𝑂 (𝑛 𝑙𝑜𝑔 𝑛) time by sorting the individual lists.
In §2.1.2, we show how to make this implementation more
efficient by removing the duplicate elements with different
ids from the OR-set.

The key question is how do we guarantee that this imple-
mentation, preserves the intent of the OR-set? The optimisa-
tions such as removing duplicate elements are notoriously
difficult to get right since the replica states evolve indepen-
dently. Moreover, individually correct RDTs may fail to pre-
serve convergence when put together [9]. In [8], the concrete
implementations are reified to their relational representa-
tions expressed in terms of sets, merged using set semantics,
and the final concrete state is reconstructed from the rela-
tional set representation. Unfortunately, mapping complex
data types to sets does not lead to efficient implementations.
Further [8] also does not consider functional correctness of
RDTs, but instead only focuses on the convergence problem.
Precisely specifying the intent of data types while mi-

grating from the sequential to the replicated world is not
straightforward, as this essentially boils down to the ques-
tion of handling conflicts between concurrent operations.
This can be (and has been) done in many diverse ways: pri-
oritizing one type of operation over another (e.g. OR-set),
using some form of timestamps (e.g. LWW Registers), chang-
ing the semantics of an operation (e.g. lists), etc. We believe
that a declarative, event-based form of specifications [2] that
exposes the underlying concurrency gives more freedom to
the RDT developer and also allows precise specifications.
In this work, we provide the first formal declarative spec-
ification (to our best knowledge) of the queue RDT which
follows ‘at-least one dequeue’ semantics for enqueued ele-
ments, and this relaxation is immediately obvious by looking
at the specification.

2 Implementing and Specifying MRDTs

In this section, we present the formal model for describing
MRDT implementations and their specifications.

2.1 Implementation

We now describe our formal model for MRDT implemen-
tations, which include operations of the data type, and the
protocol used to exchange updates on this object. Our model
of replicated datastore is similar to distributed version sys-
tems like Git [6], with replication centered around versioned
states in branches and explicit merges. A typical replicated
datastore will have a key-value interface with the capability
to store arbitrary objects as values [7, 13]. Since our goal is
to verify correct implementations of individual replicated
objects, our formalism models a store with a single object.

A replicated datastore consists of an object which is repli-
cated acrossmultiple branches𝑏1, 𝑏2, . . . ∈ 𝑏𝑟𝑎𝑛𝑐ℎ𝐼𝐷 . Clients
interact with the store by performing operations on the
object at a specified branch, modifying its local state. The
different branches may concurrently update their local states
and progress independently. We also allow dynamic creation
of a new branch by copying the state of an existing branch.
A branch at any time can get updates from any other branch
by performing amerge with that branch, updating its local
copy to reflect the merge. Conflicts might arise when the
same object is modified in two or more branches, and these
are resolved in an data type specific way.
An object has a type 𝜏 ∈ 𝑇𝑦𝑝𝑒 , whose type signature

(𝑂𝑝𝜏 ,𝑉𝑎𝑙𝜏) determines the set of supported operations 𝑂𝑝𝜏
and the set of their return values 𝑉𝑎𝑙𝜏 . A special value ⊥ ∈
𝑉𝑎𝑙𝜏 is used for operations that return no value.

Definition 2.1. Amergeable replicated data type (MRDT)
implementation for a data type 𝜏 is a tuple 𝐷𝜏 = (Σ, 𝜎0, 𝑑𝑜,
𝑚𝑒𝑟𝑔𝑒) where:

• Σ is the set of all possible states at a branch,
• 𝜎0 ∈ Σ is the initial state,
• 𝑑𝑜 : 𝑂𝑝𝜏 × Σ × 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 → Σ × 𝑉𝑎𝑙𝜏 implements
every data type operation,

• 𝑚𝑒𝑟𝑔𝑒 : Σ × Σ × Σ → Σ implements the three-way
merge strategy.

An MRDT implementation D𝜏 provides two methods:
do and merge that the datastore will invoke appropriately.
We assume that these methods execute atomically. A client
request to perform an operation 𝑜 ∈ 𝑂𝑝𝜏 at a branch triggers
the call 𝑑𝑜 (𝑜, 𝜎, 𝑡). This takes the current state 𝜎 ∈ Σ of
the object at the branch where the request is issued and a
timestamp 𝑡 ∈ 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 provided by the datastore and
produces the updated object state and the return value of
the operation.

The datastore guarantees that the timestamps are unique
across all of the branches, and for any two operations 𝑎 and
𝑏, with timestamps 𝑡𝑎 and 𝑡𝑏 , if 𝑎 happens-before 𝑏, then

Marrying Replicated and Functional Data Structures PaPoC ’22, April 5, 2022, Rennes, France.

𝑡𝑎 < 𝑡𝑏 . The data type implementation can use the times-
tamp provided to implement the conflict-resolution strategy,
but is also free to ignore it. For simplicity of presentation, we
assume that, 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = N. The datastore may choose to
implement the timestamp using Lamport clocks [11], along
with the unique branch id to provide uniqueness of times-
tamps.
A branch 𝑎 may get updates from another branch 𝑏 by

performing a merge, which modifies the state of the object in
branch 𝑎. In this case, the datastore will invoke𝑚𝑒𝑟𝑔𝑒 (𝜎𝑙𝑐𝑎,
𝜎𝑎, 𝜎𝑏) where 𝜎𝑎 and 𝜎𝑏 are the current states of branch 𝑎

and 𝑏 respectively, and 𝜎𝑙𝑐𝑎 is the lowest common ancestor
(LCA) of the two branches. The LCA of two branches is the
most recent state from which the two branches diverged.
We assume that execution of the store will begin with a
single branch, fromwhich new branches may be dynamically
created. Hence, for any two branches, the LCA will always
exist.

2.1.1 OR-set. Figure 1 shows an MRDT implementation
of the OR-set data type discussed in §1.1.

1: Σ = P(N × N)
2: 𝜎0 = {}
3: 𝑑𝑜 (𝑟𝑑, 𝜎, 𝑡) = (𝜎, {𝑎 | (𝑎, 𝑡) ∈ 𝜎})
4: 𝑑𝑜 (𝑎𝑑𝑑 (𝑎), 𝜎, 𝑡) = (𝜎 ∪ {(𝑎, 𝑡)},⊥)
5: 𝑑𝑜 (𝑟𝑒𝑚𝑜𝑣𝑒 (𝑎), 𝜎, 𝑡) = ({𝑒 ∈ 𝜎 | 𝑓 𝑠𝑡 (𝑒) ≠ 𝑎},⊥)
6: 𝑚𝑒𝑟𝑔𝑒 (𝜎𝑙𝑐𝑎, 𝜎𝑎, 𝜎𝑏) =

(𝜎𝑙𝑐𝑎 ∩ 𝜎𝑎 ∩ 𝜎𝑏) ∪ (𝜎𝑎 − 𝜎𝑙𝑐𝑎) ∪ (𝜎𝑏 − 𝜎𝑙𝑐𝑎)

Figure 1. OR-set data type implementation

Let us assume that the elements in the OR-set are natu-
ral numbers. Its type signature would be (𝑂𝑝𝑜𝑟𝑠𝑒𝑡 ,𝑉𝑎𝑙𝑜𝑟𝑠𝑒𝑡)
= ({add(𝑎), remove(𝑎) | 𝑎 ∈ N} ∪ {rd}, {P(N),⊥}). The
state of the object is a set of pairs of the element and the
timestamp. The operations and the merge remain the same
as described in §1.1. Note that we use 𝑓 𝑠𝑡 and 𝑠𝑛𝑑 functions
to obtain the first and second elements resp. from a tuple.
This implementation may have duplicate entries of the same
element with different time stamps.

2.1.2 Space-efficientOR-set. One possibility tomake this
OR-set implementation more space-efficient is by removing
the duplicate entries from the set. A duplicate element will
appear in the set if the client calls add(𝑒) for an element 𝑒
which is already in the set. Can we reimplement add such
that we leave the set as is if the set already has 𝑒? Unfortu-
nately, this breaks the intent of the OR-set. In particular, if
there were a concurrent remove of 𝑒 on a different branch,
then 𝑒 will be removed when the branches are merged. The
effect of the duplicate add was not recorded in the state of
the set, and hence, is lost. The key insight is that the effect of
the duplicate add has to be recorded so as to not lose updates.

We reimplement the OR-set such that the add operation
now only adds the element if the element is not already
present, and otherwise, updates the timestamp of the exist-
ing entry to the new timestamp. The read and the remove
operations remain the same as the earlier implementation.
Given that our timestamps are unique, the new operation’s
timestamp will be distinct from the old time stamp. This pre-
vents a concurrent remove from deleting this new addition.

Another possibility of duplicates is that the same element
may concurrently be added on two different branches. The
implementation of the merge function takes care of this
possibility by picking the entry with the larger timestamp.
We have further optimized the space-efficient OR-set to

make it a time-efficient one by implementing the set as a
binary search tree (BST).

2.2 Specification

We now present a declarative framework for specifying
MRDTs which closely follows the framework presented by
Burckhardt et al. [2]. We define our specifications on abstract
states, which capture the state of the distributed store. It con-
sists of events in a execution of the distributed store, along
with a visibility relation among them.

Definition 2.2. An abstract state for a data type 𝜏 = (𝑂𝑝𝜏 ,
𝑉𝑎𝑙𝜏) is a tuple 𝐼 = ⟨𝐸, 𝑜𝑝𝑒𝑟, 𝑟𝑣𝑎𝑙, 𝑡𝑖𝑚𝑒, 𝑣𝑖𝑠⟩, where

• 𝐸 ⊆ 𝐸𝑣𝑒𝑛𝑡 is a set of events,
• 𝑜𝑝𝑒𝑟 : 𝐸 → 𝑂𝑝𝜏 associates the data type operation
with each event,

• 𝑟𝑣𝑎𝑙 : 𝐸 → 𝑉𝑎𝑙𝜏 associates the return value with each
event,

• 𝑡𝑖𝑚𝑒 : 𝐸 → 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 associates the timestamp at
which an event was performed,

• 𝑣𝑖𝑠 ⊆ 𝐸 ×𝐸 is an irreflexive, asymmetric and transitive
visibility relation.

𝑒
𝑣𝑖𝑠−−→ 𝑓 means 𝑒 causally precedes 𝑓 . We specify a data

type 𝜏 by a function F𝜏 which determines the return value
of an operation 𝑜 based on prior operations applied on that
object. F𝜏 also takes as a parameter the abstract state that is
visible to the operation. Note that the abstract state contains
all the information that is necessary to specify the return-
value of 𝑜 .

Definition 2.3. A replicated data type specification for a
type 𝜏 is a functionF𝜏 that given an operation𝑜 ∈ 𝑂𝑝𝜏 and an
abstract state 𝐼 for 𝜏 , specifies a return value F𝜏 (𝑜, 𝐼) ∈ 𝑉𝑎𝑙𝜏 .

2.2.1 OR-set specification. For the OR-set, both add and
remove operations always return ⊥. We can formally specify
the ‘add-wins’ conflict resolution strategy as follows:

F𝑜𝑟𝑠𝑒𝑡 (rd, ⟨𝐸, 𝑜𝑝𝑒𝑟, 𝑟𝑣𝑎𝑙, 𝑡𝑖𝑚𝑒, 𝑣𝑖𝑠⟩) = {𝑎 | ∃𝑒 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑒)

= add(𝑎) ∧ ¬(∃𝑓 ∈ 𝐸. 𝑜𝑝𝑒𝑟 (𝑓) = remove(𝑎) ∧ 𝑒
𝑣𝑖𝑠−−→ 𝑓)}

PaPoC ’22, April 5, 2022, Rennes, France. S.Vimala, A.Kamath, K.Nagar, K.C.Sivaramakrishnan

In words, the read operation returns all those elements for
which there exists an add operation of the element which is
not visible to a remove operation of the same element. Hence,
if an add and remove operation are concurrent, then the add
would win. Notice that the specification, while precisely
encoding the required semantics, is far removed from the
MRDT implementations of the OR-set that we saw earlier.
Providing a framework for bridging this gap in an automated
and mechanized manner is one of the principal contributions
of this work.

3 Store Semantics and MRDT Correctness

In this section, we formally define the semantics of a repli-
cated datastore S consisting of a single object with data type
implementation D𝜏 . Note that the store semantics can be
easily generalized to multiple objects (with possibly different
data types), since the store treats each object independently.
We then define formally what it means for data type imple-
mentations to satisfy their specifications. We also introduce
a novel notion of convergence across all the branches called
convergence modulo observable behaviour that differs from
the standard notions of eventual consistency. This property
allows us to have more efficient but verified merges.

The semantics of the store is a set of all its executions. In
order to easily relate the specifications which are in terms of
abstract states to the implementation, we maintain both the
concrete state (as given by the data type implementation)
and the abstract state at every branch in our store semantics.
Formally, the semantics of the store are parametrised by a
data type 𝜏 and its implementation 𝐷𝜏 = (Σ, 𝜎0, 𝑑𝑜,𝑚𝑒𝑟𝑔𝑒).
They are represented by a labelled transition systemM𝐷𝜏

=

(Φ,→). Assume that B is the set of all possible branches.
Each state in Φ is a tuple (𝜙, 𝛿, 𝑡) where,

• 𝜙 : B ⇀ Σ is a partial function that maps branches to
their concrete states,

• 𝛿 : B ⇀ 𝐼 is a partial function that maps branches to
their abstract states,

• 𝑡 ∈ 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 maintains the current timestamp to be
supplied to operations.

The initial state of the labelled transition system consists
of only one branch𝑏⊥, and is represented by𝐶⊥ = (𝜙⊥, 𝛿⊥, 0)
where 𝜙⊥ = [𝑏⊥ ↦→ 𝜎0] and 𝛿⊥ = [𝑏⊥ ↦→ 𝐼0].

Here, 𝜎0 is the initial state as given by the implementation
𝐷𝜏 , while 𝐼0 is the empty abstract state, whose event set
is empty. In order to describe the transition rules, we first
introduce abstract operations 𝑑𝑜#, 𝑚𝑒𝑟𝑔𝑒# and 𝑙𝑐𝑎# which
perform a data type operation, merge operation and find the
lowest common ancestor respectively on abstract states:

𝑑𝑜#⟨𝐼 , 𝑒, 𝑜𝑝, 𝑎, 𝑡⟩ = ⟨𝐼 .𝐸 ∪ {𝑒}, 𝐼 .𝑜𝑝𝑒𝑟 [𝑒 ↦→ 𝑜𝑝], 𝐼 .𝑟𝑣𝑎𝑙 [𝑒 ↦→ 𝑎],
𝐼 .𝑡𝑖𝑚𝑒 [𝑒 ↦→ 𝑡], 𝐼 .𝑣𝑖𝑠 ∪ {(𝑓 , 𝑒) | 𝑓 ∈ 𝐼 .𝐸)}⟩

𝑚𝑒𝑟𝑔𝑒# (𝐼𝑎, 𝐼𝑏) = 𝐼𝑚

where 𝐼𝑚 .𝐸 = 𝐼𝑎 .𝐸 ∪ 𝐼𝑏 .𝐸

𝐼𝑚 .prop(𝑒) =
{
𝐼𝑎 (𝑒) if 𝑒 ∈ 𝐼𝑎 .𝐸

𝐼𝑏 (𝑒) if 𝑒 ∈ 𝐼𝑏 .𝐸

𝐼𝑚 .𝑣𝑖𝑠 = 𝐼𝑎 .𝑣𝑖𝑠 ∪ 𝐼𝑏 .𝑣𝑖𝑠

𝑙𝑐𝑎# (𝐼𝑎, 𝐼𝑏) = ⟨𝐸𝑙 , 𝐼𝑎 .𝑜𝑝𝑒𝑟 |𝐸𝑙 , 𝐼𝑎 .𝑟𝑣𝑎𝑙 |𝐸𝑙 , 𝐼𝑎 .𝑡𝑖𝑚𝑒 |𝐸𝑙 ,
𝐼𝑎 .𝑣𝑖𝑠 |𝐸𝑙 ⟩

where 𝐸𝑙 = 𝐼𝑎 .𝐸 ∩ 𝐼𝑏 .𝐸

Note that prop ∈ {𝑜𝑝𝑒𝑟, 𝑟𝑣𝑎𝑙, 𝑡𝑖𝑚𝑒}. In terms of abstract
states, 𝑑𝑜# simply adds the new event 𝑒 to the set of events,
appropriately setting the various event properties and visi-
bility relation.𝑚𝑒𝑟𝑔𝑒# of two abstract states simply takes a
union of the events in the two states. Similarly, the 𝑙𝑐𝑎# of
two abstract states would be the intersection of events in the
two states.

𝑏1 ∈ 𝑑𝑜𝑚(𝜙) 𝑏2 ∉ 𝑑𝑜𝑚(𝜙)
𝜙

′
= 𝜙 [𝑏2 ↦→ 𝜙 (𝑏1)] 𝛿

′
= 𝛿 [𝑏2 ↦→ 𝛿 (𝑏1)]

(𝜙, 𝛿, 𝑡)
𝐶𝑅𝐸𝐴𝑇𝐸𝐵𝑅𝐴𝑁𝐶𝐻 (𝑏1,𝑏2)−−−−−−−−−−−−−−−−−−−→ (𝜙 ′

, 𝛿
′
, 𝑡)

𝑏 ∈ 𝑑𝑜𝑚(𝜙) D𝜏 .𝑑𝑜 (𝑜, 𝜙 (𝑏), 𝑡) = (𝜎 ′
, 𝑎)

𝑒 : {𝑜𝑝𝑒𝑟 = 𝑜, 𝑡𝑖𝑚𝑒 = 𝑡, 𝑟𝑣𝑎𝑙 = 𝑎}
𝑑𝑜# (𝛿 (𝑏), 𝑒, 𝑜, 𝑎, 𝑡) = 𝐼

′

𝜙
′
= 𝜙 [𝑏 ↦→ 𝜎

′] 𝛿
′
= 𝛿 [𝑏 ↦→ 𝐼

′]

(𝜙, 𝛿, 𝑡)
𝐷𝑂 (𝑜,𝑏)
−−−−−−→ (𝜙 ′

, 𝛿
′
, 𝑡 + 1)

𝑏1 ∈ 𝑑𝑜𝑚(𝜙) 𝑏2 ∈ 𝑑𝑜𝑚(𝜙)
𝑙𝑐𝑎 ∈ 𝑑𝑜𝑚(𝜙) 𝛿 (𝑙𝑐𝑎) = 𝑙𝑐𝑎# (𝛿 (𝑏1), 𝛿 (𝑏2))
D𝜏 .𝑚𝑒𝑟𝑔𝑒 (𝜙 (𝑙𝑐𝑎), 𝜙 (𝑏1), 𝜙 (𝑏2)) = 𝜎𝑚𝑒𝑟𝑔𝑒

𝑚𝑒𝑟𝑔𝑒# (𝛿 (𝑏1), 𝛿 (𝑏2)) = 𝐼𝑚𝑒𝑟𝑔𝑒

𝜙
′
= 𝜙 [𝑏1 ↦→ 𝜎𝑚𝑒𝑟𝑔𝑒] 𝛿

′
= 𝛿 [𝑏1 ↦→ 𝐼𝑚𝑒𝑟𝑔𝑒]

(𝜙, 𝛿, 𝑡)
𝑀𝐸𝑅𝐺𝐸 (𝑏1,𝑏2)−−−−−−−−−−−→ (𝜙 ′

, 𝛿
′
, 𝑡)

Figure 2. Semantics of the replicated datastore

Figure 2 describes the transition function→. The first rule
describes the creation of new branch 𝑏2 from the current
branch 𝑏1. Both the concrete and abstract states of the new
branch will be the same as that of 𝑏1. The second rule de-
scribes a branch 𝑏 performing an operation 𝑜 which triggers
a call to the 𝑑𝑜 method of the corresponding data type imple-
mentation. The return value is recorded using the function
𝑟𝑣𝑎𝑙 . A similar update is also performed on abstract state of

Marrying Replicated and Functional Data Structures PaPoC ’22, April 5, 2022, Rennes, France.

branch 𝑏 using 𝑑𝑜#. The third rule describes the merging of
branch 𝑏2 into branch 𝑏1 which triggers a call to the𝑚𝑒𝑟𝑔𝑒

method of the data type implementation. We assume that
the store provides another branch 𝑙𝑐𝑎 whose abstract and
concrete states correspond to the lowest common ancestor
of the two branches.

Definition 3.1. An execution 𝜒 ofM𝐷𝜏
is a finite but un-

bounded sequence of transitions starting from the initial
state 𝐶⊥.

𝜒 = (𝜙⊥, 𝛿⊥, 0)
𝑒1−→ (𝜙1, 𝛿1, 𝑡1)

𝑒2−→ . . .
𝑒𝑛−−→ (𝜙𝑛, 𝛿𝑛, 𝑡𝑛) (1)

Definition 3.2. An execution 𝜒 satisfies the specification
F𝜏 for the data type 𝜏 , written as 𝜒 |= F𝜏 , if for every 𝐷𝑂

transition (𝜙𝑖 , 𝛿𝑖 , 𝑡𝑖)
𝐷𝑂 (𝑜,𝑏)
−−−−−−→ (𝜙𝑖+1, 𝛿𝑖+1, 𝑡𝑖 +1) in 𝜒 , such that

D𝜏 .𝑑𝑜 (𝑜, 𝜙𝑖 (𝑏), 𝑡𝑖) = (𝜎, 𝑎), then 𝑎 = F𝜏 (𝑜, 𝛿𝑖 (𝑏)).

That is for every operation 𝑜 , the return value 𝑎 computed
by the implementation on the concrete state must be equal to
the return value of the specification function F𝜏 computed on
the abstract state. Next we define the notion of convergence
(i.e. strong eventual consistency) in our setting:

Definition 3.3. An execution 𝜒 (as in equation 1) is con-
vergent, if for every state (𝜙𝑖 , 𝛿𝑖) and
∀𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝜙𝑖).𝛿𝑖 (𝑏1) = 𝛿𝑖 (𝑏2) =⇒ 𝜙𝑖 (𝑏1) = 𝜙𝑖 (𝑏2)

That is, two branches with the same abstract states–which
corresponds to having seen the same set of events–must also
have the same concrete state.

Definition 3.4. Two states 𝜎1 and 𝜎2 are observationally
equivalent, written as 𝜎1 ∼ 𝜎2, if the return value of every
operation supported by the data type applied on the two
states is the same. Formally,
∀𝜎1, 𝜎2 ∈ Σ. ∀𝑜 ∈ 𝑂𝑝𝜏 . ∀𝑡1, 𝑡2 ∈ 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝. ∃𝑎 ∈ 𝑉𝑎𝑙𝜏 .

D𝜏 .𝑑𝑜 (𝑜, 𝜎1, 𝑡1) = (_, 𝑎) ∧ D𝜏 .𝑑𝑜 (𝑜, 𝜎2, 𝑡2) = (_, 𝑎)
=⇒ 𝜎1 ∼ 𝜎2

Definition 3.5. An execution 𝜒 (as in equation 1) is conver-
gentmodulo observable behavior , if for every state (𝜙𝑖 , 𝛿𝑖)
and

∀𝑏1, 𝑏2 ∈ 𝑑𝑜𝑚(𝜙𝑖).𝛿𝑖 (𝑏1) = 𝛿𝑖 (𝑏2) =⇒ 𝜙𝑖 (𝑏1) ∼ 𝜙𝑖 (𝑏2)
(2)

The idea behind convergencemodulo observable behaviour
is that the state of the object at different replicas may not
converge to the same (structurally equal) representation, but
the object has the same observable behaviour in terms of
its operations. For example, in the OR-set implementation,
if the set is implemented internally as a binary search tree
(BST), then branches can independently decide to perform
balancing operations on the BST to improve the complexity
of the subsequent read operations. This would mean that the
actual state of the BSTs at different branches may eventually
not be structurally equal, but they would still contain the

same set of elements, resulting in same observable behaviour.
Note that the standard notion of eventual consistency implies
convergence modulo observable behaviour.

Definition 3.6. A data type implementation D𝜏 is correct,
if every execution 𝜒 of M𝐷𝜏

satisfies the specification F𝜏
and is convergent modulo observable behavior.

4 Proving Data Type Implementations

Correct

In this section, we show how to prove the correctness of an
MRDT implementation with the help of replication-aware
simulation relations.

4.1 Replication-aware simulation

For proving the correctness of a data type implementation
D𝜏 , we use replication-aware simulation relations R𝑠𝑖𝑚 .
While similar to simulation relations used in [2], unlike [2],
we apply this technique in the setting of mergeable repli-
cated data types. Further, we also mechanize and automate
simulation-based proofs by deriving simple sufficient condi-
tions which can easily discharged by tools such as F*. Finally,
we apply our proof technique on a wide range of MRDTs,
with substantially complex specifications (e.g. queue MRDT).

The R𝑠𝑖𝑚 relation essentially associates the concrete state
of the object at a branch 𝑏 with the abstract state at the
branch. This abstract state would consist of all events which
were applied on the branch. Verifying the correctness of a
MRDT through simulation relations involves two steps: (i)
first, we show that the simulation relation holds at every
transition in every execution of the replicated store, and
(ii) the simulation relation meets the requirements of the
data type specification and is sufficient for convergence. The
first step is essentially an inductive argument, for which
we require the simulation relation between the abstract and
concrete states to hold for every data type operation instance
and merge instance.

<latexit sha1_base64="WfvSPo/E0SFV3qx64IrolUJ9j+Y=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdEbURgzbaJWAukCxhdnI2GTM7u8zMCiHkCWwsFLHVh7G3Ed/GyaXQxB8GPv7/HOacEyScKe2631ZmYXFpeSW7aq+tb2xu5bZ3qipOJcUKjXks6wFRyJnAimaaYz2RSKKAYy3oXY3y2j1KxWJxq/sJ+hHpCBYySrSxyjetXN4tuGM58+BNIX/xYZ8n7192qZX7bLZjmkYoNOVEqYbnJtofEKkZ5Ti0m6nChNAe6WDDoCARKn8wHnToHBin7YSxNE9oZ+z+7hiQSKl+FJjKiOiums1G5n9ZI9XhmT9gIkk1Cjr5KEy5o2NntLXTZhKp5n0DhEpmZnVol0hCtbmNbY7gza48D9WjgndSOC67+eIlTJSFPdiHQ/DgFIpwDSWoAAWEB3iCZ+vOerRerNdJacaa9uzCH1lvPwGBkBM=</latexit>

I
<latexit sha1_base64="kY9uENEuWhc5qi8PNwWK3nsXmfQ=">AAAB7HicbZDLSsNAFIZP6q3GW9Wlm8EiuiqJiLoRi250V8G0hTaWyXTSDp1MwsxEKKHP4MaFIq4EX8W9G/FtnF4W2vrDwMf/n8Occ4KEM6Ud59vKzc0vLC7ll+2V1bX1jcLmVlXFqSTUIzGPZT3AinImqKeZ5rSeSIqjgNNa0Lsc5rV7KhWLxa3uJ9SPcEewkBGsjeVd32X7g1ah6JSckdAsuBMonn/YZ8nbl11pFT6b7ZikERWacKxUw3US7WdYakY4HdjNVNEEkx7u0IZBgSOq/Gw07ADtGaeNwliaJzQaub87Mhwp1Y8CUxlh3VXT2dD8L2ukOjz1MyaSVFNBxh+FKUc6RsPNUZtJSjTvG8BEMjMrIl0sMdHmPrY5gju98ixUD0vucenoximWL2CsPOzALhyACydQhiuogAcEGDzAEzxbwnq0XqzXcWnOmvRswx9Z7z/aCpG4</latexit>

I
0

<latexit sha1_base64="NEvPvrvMkTnDWMsO4OmG3WtPrug=">AAAB7XicbZDLSgMxFIbP1Fsdb1WXboJFcFVmRNSNWHTjsoK9QDuUTJppY5PMkGSEMvQd3LhQxI0LH8W9G/FtTC8Lbf0h8PH/55BzTphwpo3nfTu5hcWl5ZX8qru2vrG5Vdjeqek4VYRWScxj1QixppxJWjXMcNpIFMUi5LQe9q9Gef2eKs1ieWsGCQ0E7koWMYKNtWotzboCtwtFr+SNhebBn0Lx4sM9T96+3Eq78NnqxCQVVBrCsdZN30tMkGFlGOF06LZSTRNM+rhLmxYlFlQH2XjaITqwTgdFsbJPGjR2f3dkWGg9EKGtFNj09Gw2Mv/LmqmJzoKMySQ1VJLJR1HKkYnRaHXUYYoSwwcWMFHMzopIDytMjD2Qa4/gz648D7Wjkn9SOr7xiuVLmCgPe7APh+DDKZThGipQBQJ38ABP8OzEzqPz4rxOSnPOtGcX/sh5/wH+1JJp</latexit>�
<latexit sha1_base64="u2K3alyR93V5Tsyk5XbAla307eA=">AAAB8XicbZDLSgMxFIbP1Fsdb1WXboJFdFVmRNSNWHTjsoK9YDuWTJq2oUlmSDJCGfoWblwooksfxL0b8W1MLwtt/SHw8f/nkHNOGHOmjed9O5m5+YXFpeyyu7K6tr6R29yq6ChRhJZJxCNVC7GmnElaNsxwWosVxSLktBr2Lod59Z4qzSJ5Y/oxDQTuSNZmBBtr3TY06wh8l+4Pmrm8V/BGQrPgTyB//uGexW9fbqmZ+2y0IpIIKg3hWOu678UmSLEyjHA6cBuJpjEmPdyhdYsSC6qDdDTxAO1Zp4XakbJPGjRyf3ekWGjdF6GtFNh09XQ2NP/L6olpnwYpk3FiqCTjj9oJRyZCw/VRiylKDO9bwEQxOysiXawwMfZIrj2CP73yLFQOC/5x4ejayxcvYKws7MAuHIAPJ1CEKyhBGQhIeIAneHa08+i8OK/j0owz6dmGP3LefwDgJJQO</latexit>

�
0

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="eqvudulUp1aAWZ+2Hc2XfkMtrE4=">AAAB7nicbZDLSgMxFIYz9VbHW9Wlm+AguCozIupGLLpxWcFeoB1LJpNpQzNJSDJCGfoQblwo4sKNb+Lejfg2ppeFtv4Q+Pj/c8g5J5KMauP7305hYXFpeaW46q6tb2xulbZ36lpkCpMaFkyoZoQ0YZSTmqGGkaZUBKURI42ofzXKG/dEaSr4rRlIEqaoy2lCMTLWasTiLm97w07J88v+WHAegil4Fx/uuXz7cqud0mc7FjhLCTeYIa1bgS9NmCNlKGZk6LYzTSTCfdQlLYscpUSH+XjcITywTgwToezjBo7d3x05SrUepJGtTJHp6dlsZP6XtTKTnIU55TIzhOPJR0nGoBFwtDuMqSLYsIEFhBW1s0LcQwphYy/k2iMEsyvPQ/2oHJyUj298r3IJJiqCPbAPDkEATkEFXIMqqAEM+uABPIFnRzqPzovzOiktONOeXfBHzvsPf3aSrg==</latexit>

do#

<latexit sha1_base64="GJ8Hfqg4PT1djgXqttrSR0sa+kU=">AAAB/nicbVDLSsNAFJ34rPUVFd24GSyCq5CIqMtSXbhswT6gCWEymbRDJ5MwMxFKKPgrblwoxa0f4Be4c+O3OGm70NYDA4dz7uWeOUHKqFS2/WUsLa+srq2XNsqbW9s7u+befksmmcCkiROWiE6AJGGUk6aiipFOKgiKA0baweCm8NsPREia8Hs1TIkXox6nEcVIack3D90YqT5GLL8d+bmrUDaywsQ3K7ZlTwAXiTMjlepR45uOax913/x0wwRnMeEKMyRl17FT5eVIKIoZGZXdTJIU4QHqka6mHMVEevkk/gieaiWEUSL04wpO1N8bOYqlHMaBnizCynmvEP/zupmKrr2c8jRThOPpoShjUCWw6AKGVBCs2FAThAXVWSHuI4Gw0o2VdQnO/JcXSevcci6ti4ZuowamKIFjcALOgAOuQBXcgTpoAgxy8ARewKvxaDwbY+NtOrpkzHYOwB8Y7z+NK5mT</latexit>

D⌧ .do

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 3. Verifying op-
erations

<latexit sha1_base64="Dy/2m4Wme25ZUqS0Ppa4DBl/fiA=">AAAB7nicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GeNFbAuYBSQi9k9lkyOzsMjMrhCUf4cWDIl69+Bd+gTcvfouTx0ETCxqKqm66u/xYcG1c98tZWl5ZXVvPbGQ3t7Z3dnN7+zUdJYqyKo1EpBo+aia4ZFXDjWCNWDEMfcHq/uB67NfvmdI8kndmGLN2iD3JA07RWKl+20kFxVEnl3cL7gRkkXgzki8eVr75e+mj3Ml9troRTUImDRWoddNzY9NOURlOBRtlW4lmMdIB9ljTUokh0+10cu6InFilS4JI2ZKGTNTfEymGWg9D33aGaPp63huL/3nNxARX7ZTLODFM0umiIBHERGT8O+lyxagRQ0uQKm5vJbSPCqmxCWVtCN78y4ukdlbwLgrnFZtGCabIwBEcwyl4cAlFuIEyVIHCAB7gCZ6d2Hl0XpzXaeuSM5s5gD9w3n4AOtiTNg==</latexit>

Ilca

<latexit sha1_base64="0LdWn8vsU5WpWScCLgVwTATdjYU=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScjo06h6JScCfAicWekWD6sffP3yke1U/hsd2OaRkwaKojWLddJjJ8RZTgVbJRvp5olhA5Ij7UslSRi2s8mx47wiVW6OIyVLWnwRP09kZFI62EU2M6ImL6e98bif14rNeGVn3GZpIZJOl0UpgKbGI8/x12uGDViaAmhittbMe0TRaix+eRtCO78y4ukflZyL0rnNZtGBabIwREcwym4cAlluIEqeECBwwM8wTOS6BG9oNdp6xKazRzAH6C3H7LUklM=</latexit>

Ia
<latexit sha1_base64="HBKu1q0Rf9txQDVSNS24QtWFLgc=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScLRp1C0Sk5E+BF4s5IsXxY++bvlY9qp/DZ7sY0jZg0VBCtW66TGD8jynAq2CjfTjVLCB2QHmtZKknEtJ9Njh3hE6t0cRgrW9Lgifp7IiOR1sMosJ0RMX09743F/7xWasIrP+MySQ2TdLooTAU2MR5/jrtcMWrE0BJCFbe3YtonilBj88nbENz5lxdJ/azkXpTOazaNCkyRgyM4hlNw4RLKcANV8IAChwd4gmck0SN6Qa/T1iU0mzmAP0BvP7RZklQ=</latexit>

Ib

<latexit sha1_base64="BfeDE2EoEXsbylTaab80jHXAl0c=">AAACAnicbVDLSgMxFM3UV62vUVfiJrQIFaXMiKjLohvdVbAPaMchk962oZkHSUYow+DGT/AX3LhQxK1f4a5/Y/pYaOuByz2ccy/JPV7EmVSWNTQyC4tLyyvZ1dza+sbmlrm9U5NhLChUachD0fCIBM4CqCqmODQiAcT3ONS9/tXIrz+AkCwM7tQgAscn3YB1GCVKS66554Pown3SKqS4eOMmJD3GunnpoWsWrJI1Bp4n9pQUyvnW0fOwPKi45nerHdLYh0BRTqRs2laknIQIxSiHNNeKJUSE9kkXmpoGxAfpJOMTUnyglTbuhEJXoPBY/b2REF/Kge/pSZ+onpz1RuJ/XjNWnQsnYUEUKwjo5KFOzLEK8SgP3GYCqOIDTQgVTP8V0x4RhCqdWk6HYM+ePE9qJyX7rHR6q9O4RBNk0T7KoyKy0Tkqo2tUQVVE0SN6QW/o3XgyXo0P43MymjGmO7voD4yvH8UamV4=</latexit>

merge#(Ia, Ib)

<latexit sha1_base64="y+vKe9qLG4+BL9ex1OOHCslzrZo=">AAACJnicbVDLSgMxFM34tr5GXboJiqAoZUZE3QhFXbhUsK3QKcOd9LYGk5khyQhlmL/wD9z4K25cVES681NMWwVfBwIn59xLck6UCq6N5/WdsfGJyanpmdnS3PzC4pK7vFLTSaYYVlkiEnUdgUbBY6wabgRepwpBRgLr0e3pwK/fodI8ia9MN8WmhE7M25yBsVLoHgcSzA0DkZ8VYR4YyIqyRNVBuhVo3pEQ5oJBsft1+UajYjt0N7yyNwT9S/xPslFZD3bu+5XuRej2glbCMomxYQK0bvheapo5KMOZwKIUZBpTYLfQwYalMUjUzXwYs6CbVmnRdqLsiQ0dqt83cpBad2VkJweh9G9vIP7nNTLTPmrmPE4zgzEbPdTOBDUJHXRGW1whM6JrCTDF7V8puwEFzNhmS7YE/3fkv6S2V/YPyvuXto0TMsIMWSPrZIv45JBUyDm5IFXCyAN5Ij3y4jw6z86r8zYaHXM+d1bJDzjvHzu/qdY=</latexit>

D⌧ .merge(�lca,�a,�b)

<latexit sha1_base64="I7APEryertJNM+87oD5OYKaqUFo=">AAAB8XicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GePGYgHlgEkLvZDYZMju7zMwKYclfePGgiFfxL/wCb178FiePgyYWNBRV3XR3+bHg2rjul7O0vLK6tp7ZyG5ube/s5vb2azpKFGVVGolINXzUTHDJqoYbwRqxYhj6gtX9wfXYr98zpXkkb80wZu0Qe5IHnKKx0l1L816InRRHnVzeLbgTkEXizUi+eFj55u+lj3In99nqRjQJmTRUoNZNz41NO0VlOBVslG0lmsVIB9hjTUslhky308nFI3JilS4JImVLGjJRf0+kGGo9DH3bGaLp63lvLP7nNRMTXLVTLuPEMEmni4JEEBOR8fukyxWjRgwtQaq4vZXQPiqkxoaUtSF48y8vktpZwbsonFdsGiWYIgNHcAyn4MElFOEGylAFChIe4AmeHe08Oi/O67R1yZnNHMAfOG8/uO6UqQ==</latexit>�a
<latexit sha1_base64="ykCG9DkxGVkogyb+//Vbz73Ko2M=">AAAB8XicbVDLSgNBEOyNrxhfUcGLl8EgeAq7EtRjiBePCZgHJkuYncwmQ2Zml5lZISz5Cy8eFPEq/oVf4M2L3+LkcdDEgoaiqpvuriDmTBvX/XIyK6tr6xvZzdzW9s7uXn7/oKGjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLye+M17qjSL5K0ZxdQXuC9ZyAg2VrrraNYXuJsG426+4BbdKdAy8eakUD6qfbP3yke1m//s9CKSCCoN4VjrtufGxk+xMoxwOs51Ek1jTIa4T9uWSiyo9tPpxWN0apUeCiNlSxo0VX9PpFhoPRKB7RTYDPSiNxH/89qJCa/8lMk4MVSS2aIw4chEaPI+6jFFieEjSzBRzN6KyAArTIwNKWdD8BZfXiaN86J3USzVbBoVmCELx3ACZ+DBJZThBqpQBwISHuAJnh3tPDovzuusNePMZw7hD5y3H7pzlKo=</latexit>�b

<latexit sha1_base64="capf+EiaPW6bN91cOyWHmH5XC8Q=">AAAB83icbVDLSgNBEJyNrxhfUcGLl8EgeAq7IuoxxIvHBMwDskvoncwmQ2Zml5lZISz5DS8eFPGav/ALvHnxW5w8DppY0FBUddPdFSacaeO6X05ubX1jcyu/XdjZ3ds/KB4eNXWcKkIbJOaxaoegKWeSNgwznLYTRUGEnLbC4d3Ubz1SpVksH8wooYGAvmQRI2Cs5Pua9QV0M05g3C2W3LI7A14l3oKUKif1bzapftS6xU+/F5NUUGkIB607npuYIANlGOF0XPBTTRMgQ+jTjqUSBNVBNrt5jM+t0sNRrGxJg2fq74kMhNYjEdpOAWagl72p+J/XSU10G2RMJqmhkswXRSnHJsbTAHCPKUoMH1kCRDF7KyYDUECMjalgQ/CWX14lzcuyd12+qts0qmiOPDpFZ+gCeegGVdA9qqEGIihBT+gFvTqp8+y8Oe/z1pyzmDlGf+BMfgBFTpWM</latexit>�lca

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim
<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 4. Verifying 3-
way merge

This is depicted pictorially in figures 3 and 4. Figure 3
considers the application of a data type operation (through
the 𝑑𝑜 function) at a branch. Assuming that the simulation
relation R𝑠𝑖𝑚 holds between the abstract state 𝐼 and the
concrete state 𝜎 at the branch, we would have to show that
R𝑠𝑖𝑚 continues to hold after the application of the operation

PaPoC ’22, April 5, 2022, Rennes, France. S.Vimala, A.Kamath, K.Nagar, K.C.Sivaramakrishnan

through the concrete 𝑑𝑜 function of the implementation and
the abstract 𝑑𝑜# function on the abstract state.
Similarly, Figure 4 considers the application of a merge

operation between branches 𝑎 and 𝑏. In this case, assuming
R𝑠𝑖𝑚 between the abstract and concrete states at the two
branches and for the LCA, we would then show that R𝑠𝑖𝑚

continues to hold between the concrete and abstract states
obtained after merge. Note that since the concrete merge
operation also uses the concrete LCA state 𝜎𝑙𝑐𝑎 , we also
assume that R𝑠𝑖𝑚 holds between the concrete and abstract
LCA states.
These conditions consider the effect of concrete and ab-

stract operations locally and thus enable automated verifica-
tion. In order to discharge these conditions, we also consider
two store properties, Ψ𝑡𝑠 and Ψ𝑙𝑐𝑎 that hold across all execu-
tions (shown in Table 1). These properties play an important
role in discharging the conditions required for validity of the
simulation relation.

Ψ𝑡𝑠 (𝐼) asserts that in the abstract state 𝐼 , causally related
events have increasing timestamps, and no two events have
the same timestamp. Ψ𝑙𝑐𝑎 (𝐼𝑙 , 𝐼𝑎, 𝐼𝑏) will be instantiated with
the LCA of two abstract states 𝐼𝑎 and 𝐼𝑏 (i.e. 𝐼𝑙 = 𝑙𝑐𝑎# (𝐼𝑎, 𝐼𝑏)),
and asserts that the visibility relation between events which
are present in both 𝐼𝑎 and 𝐼𝑏 (and hence also in 𝐼𝑙) will be
the same in all three abstract states. Further, every event in
the LCA will be visible to newly added events in either of
the two branches. These properties follow naturally from
the definition of LCA and are also maintained by the store
semantics.
Table 2 shows the conditions required for proving the

validity of the simulation relationR𝑠𝑖𝑚 . In particular,Φ𝑑𝑜 and
Φ𝑚𝑒𝑟𝑔𝑒 exactly encode the scenarios depicted in the figures 3
and 4. Note that for Φ𝑑𝑜 , we assume Ψ𝑡𝑠 for the input abstract
state on which the operation will be performed. Similarly, for
Φ𝑚𝑒𝑟𝑔𝑒 , we assume Ψ𝑡𝑠 for all events in the merged abstract
state (thus ensuring Ψ𝑡𝑠 also holds for events in the original
branches) and Ψ𝑙𝑐𝑎 for the LCA of the abstract states.

Once we show that the simulation relation is maintained
at every transition in every execution inductively, we also
have to show that it is strong enough to imply the data type
specification as well as guarantee convergence. For this, we
define two more conditions Φ𝑠𝑝𝑒𝑐 and Φ𝑐𝑜𝑛 (also in table 2).
Φ𝑠𝑝𝑒𝑐 says that if abstract state 𝐼 and concrete state 𝜎 are
related by R𝑠𝑖𝑚 , then the return value of operation 𝑜 per-
formed on 𝜎 should match the value of the specification
function F𝜏 on the abstract state. Since the R𝑠𝑖𝑚 relation
is maintained at every transition, if Φ𝑠𝑝𝑒𝑐 is valid, then the
implementation will clearly satisfy the specification. Finally,
for convergence, we require that if two concrete states are
related to the same abstract state, then they should be ob-
servationally equivalent. This corresponds to our proposed
notion of convergence modulo observable behavior.

Definition 4.1. Given a MRDT implementation D𝜏 of data
type 𝜏 , a replication-aware simulation relation R𝑠𝑖𝑚 ⊆ I𝜏 ×Σ
is valid ifΦ𝑑𝑜 (R𝑠𝑖𝑚)∧Φ𝑚𝑒𝑟𝑔𝑒 (R𝑠𝑖𝑚)∧Φ𝑠𝑝𝑒𝑐 (R𝑠𝑖𝑚)∧Φ𝑐𝑜𝑛 (R𝑠𝑖𝑚).

Theorem 4.2 (Soundness). Given a MRDT implementation
D𝜏 of data type 𝜏 , if there exists a valid replication-aware
simulation R𝑠𝑖𝑚 , then the data type implementation D𝜏 is
correct.

We have also proved the soundness of our proof strategy.

4.2 Examples

Let us look at the simulation relations for verifying OR-set
implementation in §2.1.1 against the specification F𝑜𝑟𝑠𝑒𝑡 in
§2.2.1.

OR-set. Following is a candidate valid simulation relation
for the OR-set:

R𝑠𝑖𝑚 (𝐼 , 𝜎) ⇐⇒ (∀(𝑎, 𝑡) ∈ 𝜎 ⇐⇒
(∃𝑒 ∈ 𝐼 .𝐸 ∧ 𝐼 . 𝑜𝑝𝑒𝑟 (𝑒) = 𝑎𝑑𝑑 (𝑎) ∧ 𝐼 .𝑡𝑖𝑚𝑒 (𝑒) = 𝑡 ∧

¬(∃𝑓 ∈ 𝐼 .𝐸 ∧ 𝐼 . 𝑜𝑝𝑒𝑟 (𝑓) = 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑎) ∧ 𝑒
𝑣𝑖𝑠−−→ 𝑓)))

(3)

The simulation relation says that for every pair of an ele-
ment and a timestamp in the concrete state, there should be
an add event in the abstract state which adds the element
with the same timestamp, and there should not be a remove
event of the same element which witnesses that add event.
This simulation relation is maintained by all the set opera-
tions as well as by the merge operation, and it also matches
the OR-set specification and guarantees convergence. We
use F* to automatically discharge all the proof obligations of
Table 2.

5 Peepul library in F*

In this section, we discuss the instantiation of the formal-
ism developed thus far in Peepul, an F* library of certified
efficient MRDTs. F*’s core is a functional programming lan-
guage inspired by ML, with support for program verification
refinement types and monadic effects. Though F* has sup-
port for built-in effects, Peepul library only uses the pure
fragment of the language. Given that we can extract OCaml
code from our verified implementations in F*, we are able
to directly utilise our MRDTs on top of Irmin [7], a Git-like
distributed database whose execution model fits the MRDT
system model.
Table 3 tabulates the results that correspond to the ver-

ification effort of building the Peepul library. The lines of
code represents the number of lines of the data structure
without counting the lines for refinements, lemmas, theo-
rems and proofs. This is approximately the number of lines
of code there will be if the data structures were implemented
in OCaml. Everything else that has to do with verification is
included in the lines of proofs. For many of the proofs, F* is
able to automatically verify the properties either without any

Marrying Replicated and Functional Data Structures PaPoC ’22, April 5, 2022, Rennes, France.

Table 1. Store properties

Ψ𝑡𝑠 (𝐼) ∀𝑒, 𝑒 ′ ∈ 𝐼 .𝐸. 𝑒
𝐼 .𝑣𝑖𝑠−−−→ 𝑒 ′ ⇒ 𝐼 .𝑡𝑖𝑚𝑒 (𝑒) < 𝐼 .𝑡𝑖𝑚𝑒 (𝑒 ′)

∧∀𝑒, 𝑒 ′ ∈ 𝐼 .𝐸. 𝐼 .𝑡𝑖𝑚𝑒 (𝑒) = 𝐼 .𝑡𝑖𝑚𝑒 (𝑒 ′) ⇒ 𝑒 = 𝑒 ′

Ψ𝑙𝑐𝑎 (𝐼𝑙 , 𝐼𝑎, 𝐼𝑏) 𝐼𝑙 .𝑣𝑖𝑠 = 𝐼𝑎 .𝑣𝑖𝑠 |𝐼𝑙 .𝐸 = 𝐼𝑏 .𝑣𝑖𝑠 |𝐼𝑙 .𝐸

∧∀𝑒 ∈ 𝐼𝑙 .𝐸. ∀𝑒 ′ ∈ (𝐼𝑎 .𝐸 ∪ 𝐼𝑏 .𝐸) \ 𝐼𝑙 .𝐸. 𝑒
𝐼𝑎 .𝑣𝑖𝑠∪𝐼𝑏 .𝑣𝑖𝑠−−−−−−−−−→ 𝑒 ′

Table 2. Sufficient conditions for showing validity of simulation relation

Φ𝑑𝑜 (R𝑠𝑖𝑚) ∀𝐼 , 𝜎, 𝑒, 𝑜𝑝, 𝑎, 𝑡 . R𝑠𝑖𝑚 (𝐼 , 𝜎) ∧ 𝑑𝑜# (𝐼 , 𝑒, 𝑜𝑝, 𝑎, 𝑡) = 𝐼
′

∧ D𝜏 .𝑑𝑜 (𝑜𝑝, 𝜎, 𝑡) = (𝜎 ′
, 𝑎) ∧ Ψ𝑡𝑠 (𝐼) =⇒ R𝑠𝑖𝑚 (𝐼 ′, 𝜎 ′)

Φ𝑚𝑒𝑟𝑔𝑒 (R𝑠𝑖𝑚) ∀𝐼𝑎, 𝐼𝑏, 𝜎𝑎, 𝜎𝑏, 𝜎𝑙𝑐𝑎 . R𝑠𝑖𝑚 (𝐼𝑎, 𝜎𝑎) ∧ R𝑠𝑖𝑚 (𝐼𝑏, 𝜎𝑏)
∧ R𝑠𝑖𝑚 (𝑙𝑐𝑎# (𝐼𝑎, 𝐼𝑏), 𝜎𝑙𝑐𝑎) ∧ Ψ𝑡𝑠 (𝑚𝑒𝑟𝑔𝑒# (𝐼𝑎, 𝐼𝑏)) ∧ Ψ𝑙𝑐𝑎 (𝑙𝑐𝑎# (𝐼𝑎, 𝐼𝑏), 𝐼𝑎, 𝐼𝑏)

=⇒ R𝑠𝑖𝑚 (𝑚𝑒𝑟𝑔𝑒# (𝐼𝑎, 𝐼𝑏),D𝜏 .𝑚𝑒𝑟𝑔𝑒 (𝜎𝑙𝑐𝑎, 𝜎𝑎, 𝜎𝑏))
Φ𝑠𝑝𝑒𝑐 (R𝑠𝑖𝑚) ∀𝐼 , 𝜎, 𝑒, 𝑜𝑝, 𝑎, 𝑡 . R𝑠𝑖𝑚 (𝐼 , 𝜎) ∧ 𝑑𝑜# (𝐼 , 𝑒, 𝑜𝑝, 𝑎, 𝑡) = 𝐼

′

∧ D𝜏 .𝑑𝑜 (𝑜𝑝, 𝜎, 𝑡) = (𝜎 ′
, 𝑎) ∧ Ψ𝑡𝑠 (𝐼) =⇒ 𝑎 = F𝜏 (𝑜, 𝐼)

Φ𝑐𝑜𝑛 (R𝑠𝑖𝑚) ∀𝐼 , 𝜎𝑎, 𝜎𝑏 . R𝑠𝑖𝑚 (𝐼 , 𝜎𝑎) ∧ R𝑠𝑖𝑚 (𝐼 , 𝜎𝑏) =⇒ 𝜎𝑎 ∼ 𝜎𝑏

Table 3. Total lines of code and proofs for each MRDT and
verification time in seconds.

MRDTs verified #Lines

proof

#Lines

code

Verif.

Time (s)

Increment-only counter 116 7 2.017
Enable-Wins flag 158 9 193.21
Last-Writer-Wins regis-
ter

98 5 10.575

Grows-only set 67 9 0.481
Grows-only map 75 24 68.906
No tombstone OR-set 125 17 324.699
No tombstone OR-set
(Space-efficient)

294 44 2108.456

No tombstone OR-set
(BST)

280 38 2406.116

Functional queue 1123 32 5152.17

lemmas or a few, thanks to F* discharging the proof obliga-
tions to the SMT solver. Most of the proofs are a few tens of
lines of code with an exception being OR-set and functional
queues. As a whole, F* reduces manual effort and most of
the proofs are checked within few seconds. We believe that
some of the time consuming calls to the SMT solver may be
profitably replaced by a few interactive proofs.

6 Conclusion

In this work, we present Peepul, a pragmatic approach to
building and verifying MRDTs that retain the efficiency of
sequential operations as well as merge. In order to capture
the intent of the RDT, we use a declarative specification lan-
guage to describe the sequential and replication semantics of

RDT, which we use to prove the correctness of efficient imple-
mentations with the help of replication-aware simulations.
We also introduce a new, notion of convergence modulo
observable behavior, which allows replicas to converge to
different states, as long as their observable behavior to clients
remains the same. This notion allows us to build and verify
even more efficient RDTs. We instantiate our technique as
an F* library and mechanically verify the implementation
of efficient purely functional implementations including an
efficient replicated two-list queues. In the future, we plan to
construct verified compound data types by composition of
simpler data types through parametric polymorphism. We
also plan to develop a methodology for the specification and
verification of recursive MRDTs.

References

[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2018. Delta
state replicated data types. J. Parallel and Distrib. Comput. 111 (Jan
2018), 162–173. https://doi.org/10.1016/j.jpdc.2017.08.003

[2] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek
Zawirski. 2014. Replicated Data Types: Specification, Verification, Op-
timality. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (San Diego, California, USA)
(POPL ’14). Association for Computing Machinery, New York, NY, USA,
271–284. https://doi.org/10.1145/2535838.2535848

[3] Natacha Crooks, Youer Pu, Nancy Estrada, Trinabh Gupta, Lorenzo
Alvisi, and Allen Clement. 2016. TARDiS: A Branch-and-Merge Ap-
proach To Weak Consistency. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA)
(SIGMOD ’16). Association for Computing Machinery, New York, NY,
USA, 1615–1628. https://doi.org/10.1145/2882903.2882951

[4] Shashank Shekhar Dubey. 2021. Banyan: Coordination-free Distributed
Transactions over Mergeable Types. Ph.D. Dissertation. Indian Institute
of Technology, Madras, India. https://thesis.iitm.ac.in/thesis?type=
FinalThesis&rollno=CS17S025

[5] Shashank Shekhar Dubey, K. C. Sivaramakrishnan, Thomas Gazag-
naire, and Anil Madhavapeddy. 2020. Banyan: Coordination-Free

https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2882903.2882951
https://thesis.iitm.ac.in/thesis?type=FinalThesis&rollno=CS17S025
https://thesis.iitm.ac.in/thesis?type=FinalThesis&rollno=CS17S025

PaPoC ’22, April 5, 2022, Rennes, France. S.Vimala, A.Kamath, K.Nagar, K.C.Sivaramakrishnan

Distributed Transactions over Mergeable Types. In Programming Lan-
guages and Systems, Bruno C. d. S. Oliveira (Ed.). Springer International
Publishing, Cham, 231–250.

[6] Git. 2021. Git: A distributed version control system. https://git-
scm.com/

[7] Irmin. 2021. Irmin: A distributed database built on the principles of
Git. https://irmin.org/

[8] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Ja-
gannathan. 2019. Mergeable Replicated Data Types. Proc. ACM Pro-
gram. Lang. 3, OOPSLA, Article 154 (Oct. 2019), 29 pages. https:
//doi.org/10.1145/3360580

[9] Martin Kleppmann. 2020. CRDT composition failure. University of
Cambridge. https://twitter.com/martinkl/status/1327020435419041792

[10] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-First Software: You Own Your Data, in
Spite of the Cloud. In Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Athens, Greece) (Onward! 2019). As-
sociation for Computing Machinery, New York, NY, USA, 154–178.
https://doi.org/10.1145/3359591.3359737

[11] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21, 7 (jul 1978), 558–565. https:
//doi.org/10.1145/359545.359563

[12] Chris Okasaki. 1999. Purely Functional Data Structures. Cambridge
University Press, USA.

[13] Riak. 2021. Resilient NoSQL Databases. https://riak.com/
[14] Marc Shapiro, Annette Bieniusa, Nuno Preguiça, Valter Balegas, and

Christopher Meiklejohn. 2018. Just-Right Consistency: reconciling
availability and safety. arXiv:1801.06340 [cs.DC]

[15] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In Stabilization, Safety,
and Security of Distributed Systems, Xavier Défago, Franck Petit, and
Vincent Villain (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
386–400.

[16] Weihai Yu and Sigbjørn Rostad. 2020. A Low-Cost Set CRDT Based
on Causal Lengths. In Proceedings of the 7th Workshop on Principles
and Practice of Consistency for Distributed Data (Heraklion, Greece)
(PaPoC ’20). Association for Computing Machinery, New York, NY,
USA, Article 5, 6 pages. https://doi.org/10.1145/3380787.3393678

https://git-scm.com/
https://git-scm.com/
https://irmin.org/
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
https://twitter.com/martinkl/status/1327020435419041792
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://riak.com/
http://arxiv.org/abs/1801.06340
https://doi.org/10.1145/3380787.3393678

	Abstract
	1 Introduction
	1.1 Mergeable Replicated Data Types

	2 Implementing and Specifying MRDTs
	2.1 Implementation
	2.2 Specification

	3 Store Semantics and MRDT Correctness
	4 Proving Data Type Implementations Correct
	4.1 Replication-aware simulation
	4.2 Examples

	5 Peepul library in F*
	6 Conclusion
	References

