Leveraging LLMs for
Program Verification

Adharsh Kamath'? Nausheen Mohammed'? Aditya Senthilnathan'+
Saikat Chakraborty' Pantazis Deligiannis' Shuvendu Lahiri'
Akash Lal' Aseem Rastogi' Subhajit Roy? Rahul Sharma'

'Microsoft Research

a,b : work done

while at a, currently
At A

Verifying safety
- Proving that control does not reach an "unsafe” program state
- Encoded as assertion(s) in a C program

- Inductive loop invariants are required for each loop. Such
invariants are:

(i) true at the beginning of the loop
(ii) preserved by the loop body
(iii)* imply the assertion in question

Verifying safety

void main()

{
int n = 0;
int k = unknown int();
if (k < 0) return;
while (n < k)
{
N++:
}
assert (n == k):

Verifying safety

void main()

Annotation —

{

int n = 0;

int k = unknown int();

if (k < 0) return;

//@ invariant 0 <= n <= k
while (n < k)

{
Nt
}
assert (n == k)

Verifying termination

- Proving that a loop terminates

- Requires a "ranking function" (variant), an expression that:
(i) is non-negative at the beginning of every loop iteration
(ii) strictly decreases with every iteration

- Could be templates: lexicographic variants, multi-phase variants

- Often require supporting inductive invariants

Verifying termination

void main()
{
int n = 0;
int k = unknown int();
if (k < 0) return;
//@ invariant 0 <= n <= k
while (n < k)
{

N++;

’

}

Verifying termination
void main()
1
int n 0;
int k unknown int();
if (k < 0) return;
//@ invariant 0 <= n <= Kk
//@ variant k - n
while (n < k)
{

Annotation —

N++;

’

}

Pre-conditions, Post-conditions

- Desribing the behavior of a method

- Formula involving the input and output values of the method

- Loops in the method body require loop invariants

Pre-conditions, Post-conditions

int sum(int n, int m) {

if (n ==
return
} else {
return

}

0) {

m;

sum(n - 1, m + 1);:

Pre-conditions, Post-conditions

//@ requires n >= 0 & m >= 0;
Annotation — //@ ensures \result == n + m:
int sum(int n, int m) {
if (n = 0) {
return m;
} else {
return sum(n - 1, m + 1);

}

Program verification tasks

- Broken down to:
- Annotation inference: requires ingenuity
- Automated verification: automatable (SMT solvers!)

Program verification tasks

- Broken down to:
- Annotation inference: requires ingenuity
- Automated verification: automatable (SMT solvers!)

What if we use LLMs for annotation inference, and SMT solvers for

automated verification?

Loopy

- Loopy is a toolchain that uses LLMs and classical (symbolic) tools
in a guess-and-check setting

- Can be instantiated with different LLMs, different checkers
- Uses Houdini — finds the largest subset of inductive invariants

- Can be used for different tasks — loop invariants, ranking
functions, pre/post-conditions

Loopy

safe

LLM

N

Prompt +

Program Completions

Loopy
core

Loopy_ . :prompt

- Prompt contains
- Loop invariant definition

Instructions:

- Make a note of the pre-conditions or variable assignments in the program.
- Analyze the loop body and make a note of the loop condition.

- Output loop invariants that are true

(1) before the loop execution,

(ii) in every iteration of the loop and

(iii) after the loop termination,

such that the loop invariants imply the post condition.

- If a loop invariant 1is a conjunction, split it into its parts.

Loopy_ . :prompt

- Prompt contains
- Loop invariant definition
- Output syntax

- Output all the loop invariants in one code block. For example:

/*@
loop invariant 1i1;
loop invariant 1i2;
4

Loopy_ . :prompt

- Prompt contains
- Loop invariant definition
- Output syntax
- Additional "rules” for generating invariants
Rules:

- **Do not use variables or functions that are not declared in the program.**

- **Do not make any assumptions about functions whose definitions are not given.**

Loopy_ . :prompt

- Prompt contains
- Loop invariant definition
- Output syntax
- Additional "rules” for generating invariants

Based on failure cases we added more "nudges” to hint at likely

invariants

Loopy_ . :prompt

- Prompt contains
- Loop invariant definition
- Output syntax
- Additional "rules” for generating invariants
- "Nudges"

For all variables, add conjunctions that bound the maximum and
minimum values that they can take, if such bounds exist.

If a variable is always equal to or smaller or larger than
another variable, add a conjunction for their relation.

Loopy

safe

Prompt +
Program

Loopy
core

Success,
candidate labels

LLM

N

N

4

Completions

Program +
candidates

Frama-C

Loopy

safe

Prompt +
Program

Loopy
core

Success,
candidate labels

LLM

/

N

N

/

Completions

> Houdini

Failure?

Program +
candidates

Frama-C

Loopy . :Houdini Remove
safe non-inductive

candidates

oo
Loopy

core

®

Success? Program +
candidate labels | candidates

Frama-C

Loopy

safe

Prompt +
Program

Loopy
core

Success,
candidate labels

LLM

N

N

4

Completions

- > Houdini
Failure?

Program +
candidates

Frama-C

Failure?

> Repair

Loopy . (repair) LLM

N

Prompt + program +

. Completions
candidates + labels P

Loopy
COI€ " Failure?

>Houdini

/]

Success? Program +
candidate labels candidates

N

Frama-C Failure?

Loopy

safe

Prompt +
Program

Loopy
core

Success,
candidate labels

LLM

N

N

4

Completions

- > Houdini
Failure?

Program +
candidates

Frama-C

Failure?

> Repair

Loopy.....

Prompt, +
Program

Invariants

LLM

N

Completions

Loop;;f Program +
core candidate +

invariants
Program +

N

,candidate

LOOstafeJ

>Frama-C

Loopy.....

LLM

N

Completions
Prompt, +

Program

Loop& Program +

core candidate +
Invariants

Invariants Program +
lcandldate

N

Loopysafe_z

>Frama-C

Loopy.....

LLM

N

Completions
Prompts +

Program

Loopy Program +
core candidate +
invariants

Invariants Program +
candidate

>Frama-C

N

— l-Oopysafe_B

Loopy

pre/post

Prompt +
Program

Loopy
core

Success?
candidate labels

LLM

N

N

y

Completions

: > Prune
Failure?

Program +
candidates

Frama-C

Failure?

> Repair

Benchmarks

Name Size Features Sources

Scalar loops 469 |one loop, one method, no arrays | SVCOMP,
Code2lny, etc.

Array loops |69 |2 one loop, one method, Diffy

2 one array

Termination 281 one loop, one method, no arrays | SVCOMP,
TermComp

Recursive 32 no loops, 2 one recursive method | SVCOMP

Experiments

Compare Loopy instantiated with different LLMs

Compare Loopy with and without Houdini in each case

(on Scalar Loops)

Result

Number of benchmarks verified:

450 A /72 Without Houdini

(scalar loops) m—uith Houdini

400 A

370

350 A

300 A

269

250 T

200 7

150 7

Number of benchmarks verified

100 ~

50 1

0
GPT-4 GPT-3.5-Turbo Codellama-34b-Instruct

Experiments

Compare Loopy with "vanilla LLMs" — no elaborate prompt, no

Houdini, no repair

(on all benchmarks)

Results

Name Vanilla LLMs Loopy

Scalar loops 51% 85%
Array loops 36% 15%
Termination 1 7% 64%

Recursive 45% 52%

Experiments

Compare Loopy with a symbolic tool — Ultimate Automizer
across all the verification tasks

Results

Comparing Loopy with GPT-4 against Ultimate:
(on scalar loops)

Loopy Ultimate

Results

Name Loopy | Ultimate | Loopy U Ultimate
Scalar loops 85% 92% 98%
Array loops 75% 7% 75%
Termination 64% 84% 91%
Recursive 52% 65% 74%

Results

Loopy has been integrated into other tools

and has shown value:

AutoVerus: Automated Proof Generation for Rust Code
(arxiv.org/abs/2409.13082)

https://www.arxiv.org/abs/2409.13082

Results

Lemur and Loopy:

(with equal LLM-query budget)

Benchmark Lemur Loopy
Code2lnv (133) 107 103
SVCOMP (50) 26 26

Extending Loopy

Fails to infer an inductive
loop invariant here —

Common failure modes:
- Disjunctions in invariants
- Invariants with >3 terms

{

void main()

int 1; sn = .0:
int SIZE = unknown int();
for (1 =1; i <= SIZE; i++)
{

sn = sh + 1;
}
assert(sn == SIZE * 1 ||

sn == 0);

Loopy LLM

Prompt + .
P Completions
Program
Loo sl i
Y ' > Houdini . > Repair
Eore Failure? Failure?
.Success, Program +
candidate labels candidates
31 367 63
Frama-C

github.com/microsoft/loop-invariant-gen-experiments

Loopy Ultimate

https://github.com/microsoft/loop-invariant-gen-experiments

