
Leveraging LLMs for
Program Verification

Adharsh Kamath1,3 Nausheen Mohammed1,3 Aditya Senthilnathan1,4

Saikat Chakraborty1 Pantazis Deligiannis1 Shuvendu Lahiri1
Akash Lal1 Aseem Rastogi1 Subhajit Roy2 Rahul Sharma1

1
2 3 4

a,b : work done
while at a, currently
at b

Verifying safety
- Proving that control does not reach an "unsafe" program state

- Encoded as assertion(s) in a C program

- Inductive loop invariants are required for each loop. Such
invariants are:
(i) true at the beginning of the loop
(ii) preserved by the loop body
(iii)* imply the assertion in question

Verifying safety

Verifying safety

Annotation →

Verifying termination
- Proving that a loop terminates

- Requires a "ranking function" (variant), an expression that:
(i) is non-negative at the beginning of every loop iteration
(ii) strictly decreases with every iteration

- Could be templates: lexicographic variants, multi-phase variants

- Often require supporting inductive invariants

Verifying termination

Verifying termination

Annotation →

Pre-conditions, Post-conditions

- Desribing the behavior of a method

- Formula involving the input and output values of the method

- Loops in the method body require loop invariants

Pre-conditions, Post-conditions

Pre-conditions, Post-conditions

Annotation →

Program verification tasks
- Broken down to:

- Annotation inference: requires ingenuity
- Automated verification: automatable (SMT solvers!)

Program verification tasks
- Broken down to:

- Annotation inference: requires ingenuity
- Automated verification: automatable (SMT solvers!)

What if we use LLMs for annotation inference, and SMT solvers for
automated verification?

Loopy
- Loopy is a toolchain that uses LLMs and classical (symbolic) tools
in a guess-and-check setting

- Can be instantiated with different LLMs, different checkers

- Uses Houdini – finds the largest subset of inductive invariants

- Can be used for different tasks – loop invariants, ranking
functions, pre/post-conditions

Loopysafe

Loopysafe : prompt
- Prompt contains

- Loop invariant definition

Loopysafe : prompt
- Prompt contains

- Loop invariant definition
- Output syntax

Loopysafe : prompt
- Prompt contains

- Loop invariant definition
- Output syntax
- Additional "rules" for generating invariants

Loopysafe : prompt
- Prompt contains

- Loop invariant definition
- Output syntax
- Additional "rules" for generating invariants

Based on failure cases we added more "nudges" to hint at likely
invariants

Loopysafe : prompt
- Prompt contains

- Loop invariant definition
- Output syntax
- Additional "rules" for generating invariants
- "Nudges"

Loopysafe

Loopysafe

Loopysafe : Houdini

Loopysafe

Loopysafe (repair)

Loopysafe

Loopyterm

Loopyterm

Loopyterm

Loopypre/post

Benchmarks
Name Size Features Sources

Scalar loops 469 one loop, one method, no arrays SVCOMP,
Code2Inv, etc.

Array loops 169 ≥ one loop, one method,
≥ one array

Diffy

Termination 281 one loop, one method, no arrays SVCOMP,
TermComp

Recursive 32 no loops, ≥ one recursive method SVCOMP

Experiments
Compare Loopy instantiated with different LLMs

Compare Loopy with and without Houdini in each case

(on Scalar Loops)

Result
Number of benchmarks verified:

(scalar loops)

Experiments
Compare Loopy with "vanilla LLMs" – no elaborate prompt, no
Houdini, no repair

(on all benchmarks)

Results
Name Vanilla LLMs Loopy

Scalar loops 51% 85%

Array loops 36% 75%

Termination 17% 64%

Recursive 45% 52%

Experiments
Compare Loopy with a symbolic tool – Ultimate Automizer
across all the verification tasks

Results
Comparing Loopy with GPT-4 against Ultimate:
(on scalar loops)

Results
Name Loopy Ultimate Loopy ⋃ Ultimate

Scalar loops 85% 92% 98%

Array loops 75% 7% 75%

Termination 64% 84% 91%

Recursive 52% 65% 74%

Results
Loopy has been integrated into other tools
and has shown value:

AutoVerus: Automated Proof Generation for Rust Code
(arxiv.org/abs/2409.13082)

https://www.arxiv.org/abs/2409.13082

Results
Lemur and Loopy:
(with equal LLM-query budget)

Benchmark Lemur Loopy
Code2Inv (133) 107 103

SVCOMP (50) 26 26

Extending Loopy
Fails to infer an inductive
loop invariant here →

Common failure modes:
- Disjunctions in invariants
- Invariants with >3 terms

Loopy

github.com/microsoft/loop-invariant-gen-experiments

https://github.com/microsoft/loop-invariant-gen-experiments

